Abstract:
The present invention relates to the medical field, in particular to the enhancement of brain performances and for the treatment of pathological stress. More specifically the present invention relates to a nanoparticle or nanoparticles' aggregate for use in enhancing brain performances or in prevention or treatment of pathological stress in a subject without exposure of the nanoparticle or nanoparticles' aggregate to an electric field, and preferably without exposure thereof to any other external activation source, wherein the nanoparticle's or nanoparticles' aggregate's material is selected from a conductor material, a semiconductor material, an insulator material with a dielectric constant εijk equal to or above (200), and an insulator material with a dielectric constant εijk equal to or below (100). It further relates to compositions and kits comprising such nanoparticles and/or nanoparticles' aggregates as well as to uses thereof without exposure thereof to an electric field, and preferably without exposure thereof to any other external activation source such as a light source, a magnetic field, or an ultrasound source.
Abstract:
The present invention relates to a pharmaceutical composition comprising the combination of (i) at least two distinct biocompatible nanoparticles and (ii) at least one compound of interest, typically at least one pharmaceutical compound, to be administered to a subject in need of such at least one compound of interest, wherein the at least two distinct biocompatible nanoparticles potentiate the compound(s) of interest efficiency. The at least two biocompatible nanoparticles can be administered sequentially or simultaneously to the subject but are to be administered separately, typically with an interval of between more than about 5 minutes and about 72 hours, from the at least one compound of interest, preferably before the administration of the at least one compound of interest, to said subject. The longest dimension of the at least two biocompatible nanoparticles is typically between about 4 nm and about 500 nm. The absolute surface charge value of a first biocompatible nanoparticle is of at least |10 mV| and the absolute surface charge value of the second biocompatible nanoparticle, or of any additional biocompatible nanoparticle, has a difference of at least 10 mV with the absolute surface charge value of the first biocompatible nanoparticle.
Abstract:
The present invention relates to a pharmaceutical composition comprising the combination of (i) a biocompatible nanoparticle and of (ii) a pharmaceutical compound of interest, to be administered to a subject in need of such a compound of interest, wherein the nanoparticle potentiates the compound of interest efficiency. The longest dimension of the biocompatible nanoparticle is typically between about 4 and about 500 nm, and its absolute surface charge value is of at least 10 mV (|10 mV|). The invention also relates to such a composition for use for administering the compound of interest to a subject in need thereof, wherein the nanoparticle and the compound of interest are to be administered to said subject between more than 5 minutes and about 72 hours from each other.
Abstract:
The present invention relates to novel nanoparticles which can be advantageously used in the health sector as diagnostic and/or therapeutic agents. Nanoparticles of the invention comprise a metallic material at least partly covered with an hafnium oxide material or embedded therein. When compared to existing products, these nanoparticles offer a remarkable benefit over risk ratio. Specifically, these nanoparticles potentiate the efficiency of known metallic nanoparticles. Indeed, they retain the metal intrinsic properties and are now in addition safely usable in a mammal, in particular in a human being. The invention also relates to methods for producing said nanoparticles, to compositions containing same, and to uses thereof.
Abstract:
The present invention relates to the medical field, in particular to the treatment of neurological disorders. More specifically the present invention relates to a nanoparticle or nanoparticles' aggregate for use in prevention or treatment of a neurological disease or at least one symptom thereof in a subject without exposure of the nanoparticle or nanoparticles' aggregate to an electric field, and preferably without exposure thereof to any other external activation source, wherein the nanoparticle's or nanoparticles' aggregate's material is selected from a conductor material, a semiconductor material, an insulator material with a dielectric constant εijk equal to or above 200, and an insulator material with a dielectric constant εijk equal to or below 100. It further relates to compositions and kits comprising such nanoparticles and/or nanoparticles' aggregates as well as to uses thereof without exposure thereof to an electric field, and preferably without exposure thereof to any other external activation source.
Abstract:
The present invention relates to the medical field, in particular to the modulation of electrical polarization of neurons. More specifically the present invention relates to a nanoparticle or nanoparticles' aggregate for use for modulating electrical polarization of neurons in a subject, for example for use in prevention or treatment of a neuronal disease in a subject, typically by modulating electrical polarization of neurons in the subject, wherein i) when the nanoparticle or nanoparticles' aggregate is exposed to a light source, the nanoparticle's or nanoparticles' aggregate's material is selected from a material enabling opto-electric transduction, opto-thermal transduction or opto-optical transduction, ii) when the nanoparticle or nanoparticles' aggregate is exposed to a magnetic field, the nanoparticle's or nanoparticles' aggregate's material is selected from a material enabling magneto-electric transduction or magneto-thermal transduction, iii) when the nanoparticle or nanoparticles' aggregate's surface is exposed to an ultrasound source, the nanoparticle's or nanoparticles' aggregate's material is a material enabling acousto-electric transduction, and wherein the nanoparticle or nanoparticles' aggregate is either neutrally charged in the absence of any coating or is coated with a hydrophilic agent conferring a neutral surface charge to the nanoparticle or nanoparticles' aggregate. It further relates to compositions and kits comprising such nanoparticles and/or nanoparticles' aggregates as well as to uses thereof.
Abstract:
The invention pertains to a method of monitoring the membrane permeabilization of a liposome and the incidental release of a compound of interest. The method utilizes liposomes comprising a thermosensitive lipidic membrane encapsulating the product of interest and superparamagnetic nanoparticles having the electrostatic surface charge below −20 mV or above +20 mV when measured in an aqueous medium at physiological pH. In one embodiment, the method comprises the steps of: a) measuring relaxation time (T2*); b) heating the liposome at Tm or above Tm; c) measuring T2* after step b); d) obtaining the transverse relaxivity (r2*) values from the T2* values obtained from step a) and step c); and e) determining the ratio of r2* before and after the heating step b). A ratio above 1.5 indicates the liposome membrane permeabilization and the incidental release of the product of interest.
Abstract:
The present invention relates to the medical field, in particular to the treatment of neurological disorders. More specifically the present invention relates to a nanoparticle or nanoparticles' aggregate for use in prevention or treatment of a neurological disease or at least one symptom thereof in a subject when the nanoparticle or nanoparticles' aggregate is exposed to an electric field, wherein the nanoparticle's or nanoparticles' aggregate's material is selected from a conductor material, a semiconductor material, an insulator material with a dielectric constant εijk equal to or above 200, and an insulator material with a dielectric constant εijk equal to or below 100. It further relates to compositions and kits comprising such nanoparticles and/or nanoparticles' aggregates as well as to uses thereof.
Abstract:
The present invention relates to the medical field, in particular to the treatment of neurological disorders. More specifically the present invention relates to a nanoparticle or nanoparticles' aggregate for use in prevention or treatment of a neurological disease or at least one symptom thereof in a subject when the nanoparticle or nanoparticles' aggregate is exposed to an electric field, wherein the nanoparticle's or nanoparticles' aggregate's material is selected from a conductor material, a semiconductor material, an insulator material with a dielectric constant εijk equal to or above 200, and an insulator material with a dielectric constant εijk equal to or below 100. It further relates to compositions and kits comprising such nanoparticles and/or nanoparticles' aggregates as well as to uses thereof.
Abstract:
The present invention relates to the medical field, in particular to the enhancement of brain performances and to the treatment of pathological stress. More specifically the present invention relates to a nanoparticle or nanoparticles' aggregate for use in enhancing brain performances or in prevention or treatment of pathological stress in a subject when the nanoparticle and/or nanoparticles' aggregate is exposed to an electric field, wherein the nanoparticle's or nanoparticles' aggregate's material is selected from a conductor material, a semiconductor material, an insulator material with a dielectric constant εijk equal to or above 200, and an insulator material with a dielectric constant εijk equal to or below 100. It further relates to compositions and kits comprising such nanoparticles and/or nanoparticles' aggregates as well as to uses thereof.