摘要:
The present invention relates to methods, a user equipment and a radio base station in a communication network, in which a downlink out-of-coverage is detected based on measurements done on a common channel or on the combination of common and dedicated channels. The out-of-coverage is then reported to the network, either using resources proactively assigned to the user equipment, or by transmitting a predetermined pattern of signature sequences assigned to the user equipment.
摘要:
The present invention relates to methods, a user equipment and a radio base station in a communication network, in which a downlink out-of-coverage is detected based on measurements done on a common channel or on the combination of common and dedicated channels. The out-of-coverage is then reported to the network, either using resources proactively assigned to the user equipment, or by transmitting a predetermined pattern of signature sequences assigned to the user equipment.
摘要:
The present invention relates to a method, a base station and an interface for handover in a wireless communication network. Handover is initiated when the signal quality falls below a predetermined value. Random access serves as an uplink procedure to enable the UE to make handover from a first base station (eNodeB) to a suitable second base station (eNodeB). In the present invention, random access parameters are exchanged between second and first base station before said first base station signals said random access parameters to said user equipment.
摘要:
Method and arrangement in a base station, a user equipment and a positioning node, for sending, and obtaining, respectively, a value of a propagation delay of a signal. The signal is sent to the base station from a user equipment. The base station and the user equipment are comprised within a wireless communication system. Also, the base station and the user equipment are adapted to exchange wireless signals. The method is characterized by the step of receiving a signal sent from the user equipment. The method is further characterized by the step of measuring the value of the signal propagation delay of the received signal. Still further, the method is characterized by the step of sending the measured value to the equipment and/or to a positioning node comprised within the wireless communication system.
摘要:
There is provided a method for use in a user equipment when the user equipment is in idle mode or any other low activity state, and when the user equipment bandwidth is smaller than the cell transmission bandwidth. The method comprises the steps of determining a paging position of the user equipment in the frequency domain; receiving, from the network, paging information within the user equipment reception bandwidth; and changing, if indicated by the network, the paging position of the user equipment within the cell transmission bandwidth.
摘要:
The present invention relates to a method, a base station and an interface for handover in a wireless communication network. Handover is initiated when the signal quality falls below a predetermined value. Random access serves as an uplink procedure to enable the UE to make handover from a first base station (eNodeB) to a suitable second base station (eNodeB). In the present invention, random access parameters are exchanged between second and first base station before said first base station signals said random access parameters to said user equipment.
摘要:
A method of supporting frequency-selective repeaters (eNodeRs) in a wireless telecommunication system. A base station (eNodeB) classifies User Equipments (UEs) into two categories or lists of users: a white list containing UEs that may need the assistance of repeaters, and a black list containing UEs that do not need repeater assistance. The eNodeB transmits one of these two lists to the eNodeRs. The eNodeRs do not amplify resource blocks (RBs) scheduled for black list UEs. Each repeater may decide on its own whether to amplify signals for a non-black list UE by measuring signals from the UE and comparing them with predefined criteria.
摘要:
The present invention relates to a method for sending reserved sub-carriers to a UE for the purpose of reducing peak to average power ratio (PAPR) of the transmitted signal to ensure sufficient quality of the modulated signal to achieve high data rate, including the steps of sending the information related to dynamic activation and deactivation of reserved sub-carriers on a common channel, which is readable for all UEs in idle and in connected mode; dynamically activating the transmission of the reserved sub-carriers in a cell when high modulation quality is to be maintained; dynamically deactivating the transmission of the reserved sub-carriers in a cell when high modulation quality is not required. The invention furthermore relates to a radio base station and a UE relating to said method.
摘要:
Methods of performing intra-band carrier aggregation in a multi-tiered wireless network include determining a capability of a user equipment unit located within an overlapping coverage area of first and second radio network nodes to simultaneously receive data on a first component carrier and on a second component carrier from the first and second network nodes, and simultaneously transmitting data to the user equipment unit using the first and second component carriers from different radio network nodes in response to determining that the user equipment unit is capable of simultaneously receiving data on the first component carrier and on the second component carrier from different radio network nodes.
摘要:
A method for providing geographic region data includes receiving geographic position data associated with a location point of a first user equipment and receiving a first radio fingerprint. The method also includes associating the received first radio fingerprint with the received geographic position data and clustering the received geographic position data to create cluster boundaries defining geographical region data. The method further includes receiving a second radio fingerprint and comparing the second radio fingerprint received from the second user equipment with previously received radio fingerprints being associated with geographic region data, and if the second radio fingerprint corresponds to a previously received radio fingerprint, associating the geographic region data of the previously received radio fingerprint with the location point of the second user equipment, and providing the geographic region data, associated with the location point of the second user equipment.