Abstract:
A method and apparatus for processing an image of fragmented material to identify fragmented material portions within the image is disclosed. The method involves receiving pixel data associated with an input plurality of pixels representing the image of the fragmented material. The method also involves processing the pixel data using a convolutional neural network, the convolutional neural network having a plurality of layers and producing a pixel classification output indicating whether pixels in the input plurality of pixels are located at one of an edge of a fragmented material portion, inwardly from the edge, and at interstices between fragmented material portions. The convolutional neural network includes at least one convolution layer configured to produce a convolution of the input plurality of pixels, the convolutional neural network having been previously trained using a plurality of training images including previously identified fragmented material portions. The method further involves processing the pixel classification output to associate identified edges with fragmented material portions.
Abstract:
A method and apparatus for locating and/or determining the condition of a wear part in an image of an operating implement associated with heavy equipment is disclosed. The method involves capturing at least one image of the operating implement during operation of the heavy equipment, the image including a plurality of pixels each having an intensity value. The method also involves selecting successive pixel subsets within the plurality of pixels, and processing each pixel subset to determine whether pixel intensity values in the pixel subset meet a matching criterion indicating a likelihood that the pixel subset corresponds to the wear part. The matching criterion is based on processing a labeled set of training images during a training exercise prior to capturing the at least one image of the operating implement.
Abstract:
A method and apparatus for processing an image of fragmented material to identify fragmented material portions within the image is disclosed. The method involves receiving pixel data associated with an input plurality of pixels representing the image of the fragmented material. The method also involves processing the pixel data using a convolutional neural network, the convolutional neural network having a plurality of layers and producing a pixel classification output indicating whether pixels in the input plurality of pixels are located at one of an edge of a fragmented material portion, inwardly from the edge, and at interstices between fragmented material portions. The convolutional neural network includes at least one convolution layer configured to produce a convolution of the input plurality of pixels, the convolutional neural network having been previously trained using a plurality of training images including previously identified fragmented material portions. The method further involves processing the pixel classification output to associate identified edges with fragmented material portions.
Abstract:
A method and apparatus for performing a fragmentation assessment of a material including fragmented material portions is disclosed. The method involves receiving two-dimensional image data representing a region of interest of the material, and processing the 2D image data to identify features of the fragmented material portions. The method also involves receiving a plurality of three dimensional point locations on surfaces of the fragmented material portions within the region of interest, identifying 3D point locations within the plurality of three dimensional point locations that correspond to identified features in the 2D image, and using the identified corresponding 3D point locations to determine dimensional attributes of the fragmented material portions.