Abstract:
An IC socket (1) for receiving an IC package having a plurality of pins extending downwardly includes a base (2), a plurality of terminals (7) received in the base, a cover (5) mounted upon the base (2), and a cam (6). The cover (5) includes a carrying section (50) for carrying the IC package and a cam-receiving section (51). The carrying section (50) forms a plurality of through holes (500) for insertion of the pins of the IC package. The cam (6) is disposed at the cam-receiving section (51) for actuating the cover (5) to move with respect to the base (2) in a first direction A. The cam (6) is offset from a central line CL of the carrying section (50) which extends along the first direction A.
Abstract:
An IC socket (1) for receiving an IC package having a plurality of pins extending downwardly includes a base (2), a plurality of terminals (7) received in the base, a cover (5) mounted upon the base (2), and a cam (6). The cover (5) includes a carrying section (50) for carrying the IC package and a cam-receiving section (51). The carrying section (50) forms a plurality of through holes (500) for insertion of the pins of the IC package. The cam (6) is disposed at the cam-receiving section (51) for actuating the cover (5) to move with respect to the base (2) in a first direction A. The cam (6) is offset from a central line CL of the carrying section (50) which extends along the first direction A.
Abstract:
A socket assembly, comprising a socket, a package received in the socket, a pressing member arranged upon the package and downwardly pressing the package and two heat pipes attached to the pressing member. The pressing member is formed with four arch grooves along a peripheral thereof, and the arch grooves allow linking members to pass therethrough and rotatablely retain the pressing member on a printed circuit board. Therefore, the pressing member can rotate in a certain range, by sliding the arch groove with respect to the linking member, to provide a flexible arrangement for heat pipes.
Abstract:
A socket connector (100) adapted for electrically connecting a package to a printed circuit board comprises a substrate (2) and a plurality of contacts (3), the substrate (2) comprises a top surface (21), a bottom surface (22) opposite to the top surface (21) and a plurality of passageways (211) impenetrate the top surface (21) and the bottom surface (22), the contact (3) is partly received in the passageway (211) and comprises a body portion (31), at least one leg (33) extends downwardly from the body portion (31) and a spring arm (32) extends upwardly from the body portion (31), the body portion (31) is attached to the top surface of the substrate (2) and the leg (33) goes through the passageway (211) to position the contact (3) on the substrate (2).
Abstract:
An electrical contact material includes a base material, a first number of plating layers forming a contact section and a second number of plating layers forming a soldering section, respectively. The second number of plating layers is provided on the base material and includes a Ni-plating layer directly on the base material and an organic antioxidant-plating layer on said Ni-plating layer.
Abstract:
An electrical connector (1) comprises a base (10) with a plurality of contacts (19) received therein, a cover (11) slidably mounted on the base (10), a protecting mechanism (12) comprises a cover plate (13) retained in the cover (11) and a bottom plate (14) retained in the base (10), a cam actuator (16) rotatably assembled to the base (10), the cover (11) and the protecting mechanism (12) for actuating the cover (11) to slid on the base (10), the bottom plate (14) comprises a first plate (142) and a second plate (141), the first plate (142) comprises a base portion (1421) and a first engaging portion (1422) extending curvedly from the end of the body portion (1421).
Abstract:
An electrical connector for electrically connecting a pin leg of a CPU with a trace of a PCB includes an insulative housing (3) and a contact (1). The contact includes a base (10) and a pair of arm sections (20) oppositely extending from lateral sides of the base for engagement with the pin leg. The base has a body section (12) for being secured in the insulative housing and a soldering section (14) for being soldered onto the PCB. Each arm section forms a heave (24) to interfere with the insulative housing because of deformation of the arm sections.
Abstract:
An electrical connector assembly includes an electrical connector, a chip located and a printed circuit board located at opposite sides of the anisoptropic conductive film. The electrical connector has an anisoptropic conductive film and a loading mechanism. The anisoptropic conductive film includes an adhesive and a number of conductive particles dispersed in the adhesive. The anisoptropic conductive film has conductivity only in a thicknesswise direction by pressing. The loading mechanism can exert pressure on the anisoptropic conductive film so that the chip and the printed circuit board electrically couples with each other.
Abstract:
An electrical connector includes an insulative housing and a plurality of contacts. The insulative housing defines a base with opposite front and rear end regions along a front-to-back direction and a plurality of side walls upwardly extending from the base, the base cooperates with the sidewalls to commonly define a first receiving room. A notch defined in the front region of the base forms a second receiving room under the first receiving room, said second receiving room is smaller than the first receiving room. The contacts is disposed in the rear region of said housing with contacting sections extending upwardly beyond an upward mating face of the base and into the first receiving room. An optoelectronic module includes stacked upper portion and lower portion, said upper portion is received in the upper receiving room and said lower portion is received in the lower receiving room. Soldering tails of said contacts are located under the rear region of the base and do not extend into the second receiving room.
Abstract:
An LED lead frame includes an insulative base having a cavity on one side. A pair of conductive leads each has an end exposed in the cavity and another end extended out of insulative base. An electrostatic discharge protection device is insert-molded in the insulative base with only one side thereof exposed out of the insulative base, and is electrically interconnecting with the conductive leads.