IMAGE DEMOSAICING
    1.
    发明申请
    IMAGE DEMOSAICING 有权
    图像分解

    公开(公告)号:US20150215590A1

    公开(公告)日:2015-07-30

    申请号:US14163851

    申请日:2014-01-24

    IPC分类号: H04N9/04 G06T3/40 H04N9/69

    CPC分类号: H04N9/045 G06T3/4015 H04N9/69

    摘要: Image demosaicing is described, for example, to enable raw image sensor data, where image elements have intensity values in only one of three color channels, to be converted into a color image where image elements have intensity values in three color channels. In various embodiments a trained machine learning component is used to carry out demosaicing optionally in combination with denoising. In some examples the trained machine learning system comprises a cascade of trained regression tree fields. In some examples the machine learning component has been trained using pairs of mosaiced and demosaiced images where the demosaiced images have been obtained by downscaling natural color digital images. For example, the mosaiced images are obtained from the demosaiced images by subsampling according to one of a variety of color filter array patterns.

    摘要翻译: 例如,图像去马赛克被描述为使得原始图像传感器数据(其中图像元素仅在三个颜色通道中的一个中具有强度值)被转换成其中图像元素具有三个颜色通道中的强度值的彩色图像。 在各种实施例中,训练的机器学习部件被用于可选地结合去噪进行去马赛克。 在一些示例中,经过训练的机器学习系统包括经训练的回归树字段的级联。 在一些示例中,机器学习部件已经使用成对的马赛克和去马赛克图像进行了训练,其中已经通过降低自然色彩数字图像来获得去马赛克图像。 例如,通过根据各种滤色器阵列图案之一的二次抽样从马赛克图像获得镶嵌图像。

    Image restoration cascade
    2.
    发明授权
    Image restoration cascade 有权
    图像恢复级联

    公开(公告)号:US09396523B2

    公开(公告)日:2016-07-19

    申请号:US13949940

    申请日:2013-07-24

    IPC分类号: G06K9/00 G06T5/00 G06K9/62

    摘要: Image restoration cascades are described, for example, where digital photographs containing noise are restored using a cascade formed from a plurality of layers of trained machine learning predictors connected in series. For example, noise may be from sensor noise, motion blur, dust, optical low pass filtering, chromatic aberration, compression and quantization artifacts, down sampling or other sources. For example, given a noisy image, each trained machine learning predictor produces an output image which is a restored version of the noisy input image; each trained machine learning predictor in a given internal layer of the cascade also takes input from the previous layer in the cascade. In various examples, a loss function expressing dissimilarity between input and output images of each trained machine learning predictor is directly minimized during training. In various examples, data partitioning is used to partition a training data set to facilitate generalization.

    摘要翻译: 描述了图像恢复级联,例如,其中使用由多个连续串联的训练机器学习预测器层形成的级联来恢复含有噪声的数字照片。 例如,噪声可能来自传感器噪声,运动模糊,灰尘,光学低通滤波,色差,压缩和量化伪像,下采样或其他源。 例如,给定嘈杂的图像,每个经过训练的机器学习预测器产生作为噪声输入图像的恢复版本的输出图像; 在级联的给定内部层中的每个经过训练的机器学习预测器也在级联中从前一层输入。 在各种示例中,在训练期间直接最小化表示每个训练机器学习预测器的输入和输出图像之间的不相似性的损失函数。 在各种示例中,使用数据划分来分割训练数据集以便于泛化。

    Image demosaicing
    3.
    发明授权
    Image demosaicing 有权
    图像去马赛克

    公开(公告)号:US09344690B2

    公开(公告)日:2016-05-17

    申请号:US14163851

    申请日:2014-01-24

    CPC分类号: H04N9/045 G06T3/4015 H04N9/69

    摘要: Image demosaicing is described, for example, to enable raw image sensor data, where image elements have intensity values in only one of three color channels, to be converted into a color image where image elements have intensity values in three color channels. In various embodiments a trained machine learning component is used to carry out demosaicing optionally in combination with denoising. In some examples the trained machine learning system comprises a cascade of trained regression tree fields. In some examples the machine learning component has been trained using pairs of mosaiced and demosaiced images where the demosaiced images have been obtained by downscaling natural color digital images. For example, the mosaiced images are obtained from the demosaiced images by subsampling according to one of a variety of color filter array patterns.

    摘要翻译: 例如,图像去马赛克被描述为使得原始图像传感器数据(其中图像元素仅在三个颜色通道中的一个中具有强度值)被转换成其中图像元素具有三个颜色通道中的强度值的彩色图像。 在各种实施例中,训练的机器学习部件被用于可选地结合去噪进行去马赛克。 在一些示例中,经过训练的机器学习系统包括经训练的回归树字段的级联。 在一些示例中,机器学习部件已经使用成对的马赛克和去马赛克图像进行了训练,其中已经通过降低自然色彩数字图像来获得去马赛克图像。 例如,通过根据各种滤色器阵列图案之一的二次抽样从马赛克图像获得镶嵌图像。

    IMAGE RESTORATION CASCADE
    4.
    发明申请
    IMAGE RESTORATION CASCADE 有权
    图像恢复CASCADE

    公开(公告)号:US20150030237A1

    公开(公告)日:2015-01-29

    申请号:US13949940

    申请日:2013-07-24

    IPC分类号: G06T5/00 G06K9/62

    摘要: Image restoration cascades are described, for example, where digital photographs containing noise are restored using a cascade formed from a plurality of layers of trained machine learning predictors connected in series. For example, noise may be from sensor noise, motion blur, dust, optical low pass filtering, chromatic aberration, compression and quantization artifacts, down sampling or other sources. For example, given a noisy image, each trained machine learning predictor produces an output image which is a restored version of the noisy input image; each trained machine learning predictor in a given internal layer of the cascade also takes input from the previous layer in the cascade. In various examples, a loss function expressing dissimilarity between input and output images of each trained machine learning predictor is directly minimized during training. In various examples, data partitioning is used to partition a training data set to facilitate generalization.

    摘要翻译: 描述了图像恢复级联,例如,其中使用由多个连续串联的训练机器学习预测器层形成的级联来恢复含有噪声的数字照片。 例如,噪声可能来自传感器噪声,运动模糊,灰尘,光学低通滤波,色差,压缩和量化伪像,下采样或其他源。 例如,给定嘈杂的图像,每个经过训练的机器学习预测器产生作为噪声输入图像的恢复版本的输出图像; 在级联的给定内部层中的每个经过训练的机器学习预测器也在级联中从前一层输入。 在各种示例中,在训练期间直接最小化表示每个训练机器学习预测器的输入和输出图像之间的不相似性的损失函数。 在各种示例中,使用数据划分来分割训练数据集以便于泛化。

    IMAGE DEBLURRING
    5.
    发明申请
    IMAGE DEBLURRING 审中-公开
    图像消失

    公开(公告)号:US20140307950A1

    公开(公告)日:2014-10-16

    申请号:US13862415

    申请日:2013-04-13

    IPC分类号: G06T5/00 G06K9/62

    摘要: Image deblurring is described, for example, to remove blur from digital photographs captured at a handheld camera phone and which are blurred due to camera shake. In various embodiments an estimate of blur in an image is available from a blur estimator and a trained machine learning system is available to compute parameter values of a blur function from the blurred image. In various examples the blur function is obtained from a probability distribution relating a sharp image, a blurred image and a fixed blur estimate. For example, the machine learning system is a regression tree field trained using pairs of empirical sharp images and blurred images calculated from the empirical images using artificially generated blur kernels.

    摘要翻译: 描述了图像去模糊,例如,从在手持相机手机拍摄的数字照片中消除模糊,并且由于相机抖动而被模糊。 在各种实施例中,图像中的模糊估计可以从模糊估计器获得,并且经过训练的机器学习系统可用于从模糊图像计算模糊函数的参数值。 在各种示例中,从与清晰图像,模糊图像和固定模糊估计相关联的概率分布获得模糊功能。 例如,机器学习系统是使用经验锐利图像对和使用人为生成的模糊内核从经验图像计算的模糊图像训练的回归树字段。

    RESOURCE ALLOCATION FOR MACHINE LEARNING
    6.
    发明申请
    RESOURCE ALLOCATION FOR MACHINE LEARNING 审中-公开
    资源分配机器学习

    公开(公告)号:US20140172753A1

    公开(公告)日:2014-06-19

    申请号:US13714610

    申请日:2012-12-14

    IPC分类号: G06N99/00

    CPC分类号: G06N20/00

    摘要: Resource allocation for machine learning is described such as for selecting between many possible options, for example, as part of an efficient training process for random decision tree training, for selecting which of many families of models best describes data, for selecting which of many features best classifies items. In various examples samples of information about uncertain options are used to score the options. In various examples, confidence intervals are calculated for the scores and used to select one or more of the options. In examples, the scores of the options may be bounded difference statistics which change little as any sample is omitted from the calculation of the score. In an example, random decision tree training is made more efficient whilst retaining accuracy for applications not limited to human body pose detection from depth images.

    摘要翻译: 描述了用于机器学习的资源分配,例如用于在许多可能的选项之间进行选择,例如,作为用于随机决策树训练的有效训练过程的一部分,用于选择模型中的哪些家族最好地描述数据,用于选择许多特征中的哪一个 最好分类项目。 在各种示例中,使用有关不确定选项的信息样本来评分选项。 在各种示例中,计算得分的置信区间,并用于选择一个或多个选项。 在示例中,选项的分数可以是有限差分统计,其变化很小,因为从分数的计算中省略了任何样本。 在一个示例中,使随机决策树训练更有效,同时保持不受深度图像的人体姿态检测的应用的准确性。

    DECISION TREE TRAINING IN MACHINE LEARNING
    7.
    发明申请
    DECISION TREE TRAINING IN MACHINE LEARNING 有权
    机器学习中的决策树训练

    公开(公告)号:US20140122381A1

    公开(公告)日:2014-05-01

    申请号:US13660692

    申请日:2012-10-25

    IPC分类号: G06F15/18

    CPC分类号: G06N99/005

    摘要: Improved decision tree training in machine learning is described, for example, for automated classification of body organs in medical images or for detection of body joint positions in depth images. In various embodiments, improved estimates of uncertainty are used when training random decision forests for machine learning tasks in order to give improved accuracy of predictions and fewer errors. In examples, bias corrected estimates of entropy or Gini index are used or non-parametric estimates of differential entropy. In examples, resulting trained random decision forests are better able to perform classification or regression tasks for a variety of applications without undue increase in computational load.

    摘要翻译: 描述了机器学习中的改进的决策树训练,例如用于医学图像中的身体器官的自动分类或用于在深度图像中检测身体关节位置。 在各种实施例中,当训练用于机器学习任务的随机决策树时,使用改进的不确定性估计,以提高预测的准确性和更少的错误。 在实例中,使用熵或Gini指数的偏差修正估计或差分熵的非参数估计。 在实例中,得到的训练有素的随机决策树能够更好地对各种应用执行分类或回归任务,而不会过度增加计算量。

    Blind image deblurring with cascade architecture
    8.
    发明授权
    Blind image deblurring with cascade architecture 有权
    盲目的图像脱落与级联架构

    公开(公告)号:US09430817B2

    公开(公告)日:2016-08-30

    申请号:US14077247

    申请日:2013-11-12

    IPC分类号: G06K9/62 G06T5/00 G06K9/40

    摘要: Blind image deblurring with a cascade architecture is described, for example, where photographs taken on a camera phone are deblurred in a process which revises blur estimates and estimates a blur function as a combined process. In various examples the estimates of the blur function are computed using first trained machine learning predictors arranged in a cascade architecture. In various examples a revised blur estimate is calculated at each level of the cascade using a latest deblurred version of a blurred image. In some examples the revised blur estimates are calculated using second trained machine learning predictors interleaved with the first trained machine learning predictors.

    摘要翻译: 描述了具有级联架构的盲目图像去模糊,例如,在修改模糊估计并且将模糊功能估计为组合处理的过程中,在照相机电话上拍摄的照片被去毛刺的情况下被描述。 在各种示例中,使用以级联架构布置的第一训练机器学习预测器来计算模糊函数的估计。 在各种示例中,使用模糊图像的最新去模糊版本在级联的每个级别处计算修正的模糊估计。 在一些示例中,使用与第一训练机器学习预测器交错的第二训练机器学习预测器来计算修正的模糊估计。

    MEMORY FACILITATION USING DIRECTED ACYCLIC GRAPHS
    9.
    发明申请
    MEMORY FACILITATION USING DIRECTED ACYCLIC GRAPHS 有权
    使用方向图的图形存储器

    公开(公告)号:US20150134576A1

    公开(公告)日:2015-05-14

    申请号:US14079394

    申请日:2013-11-13

    IPC分类号: G06N99/00

    摘要: Memory facilitation using directed acyclic graphs is described, for example, where a plurality of directed acyclic graphs are trained for gesture recognition from human skeletal data, or to estimate human body joint positions from depth images for gesture detection. In various examples directed acyclic graphs are grown during training using a training objective which takes into account both connection patterns between nodes and split function parameter values. For example, a layer of child nodes is grown and connected to a parent layer of nodes using an initialization strategy. In examples, various local search processes are used to find good combinations of connection patterns and split function parameters.

    摘要翻译: 描述使用有向非循环图的存储器便利化,例如,其中针对来自人类骨骼数据的手势识别训练多个有向非循环图,或者从用于手势检测的深度图像估计人体关节位置。 在各种示例中,使用训练目标在训练期间生长定向非循环图,其考虑了节点之间的连接模式和分离功能参数值。 例如,使用初始化策略生长子层节点并连接到父层节点。 在示例中,使用各种本地搜索过程来找到连接模式和分割功能参数的良好组合。

    BLIND IMAGE DEBLURRING WITH CASCADE ARCHITECTURE
    10.
    发明申请
    BLIND IMAGE DEBLURRING WITH CASCADE ARCHITECTURE 有权
    用CASCADE ARCHITECTURE进行BLIND IMAGE DEBLURRING

    公开(公告)号:US20150131898A1

    公开(公告)日:2015-05-14

    申请号:US14077247

    申请日:2013-11-12

    IPC分类号: G06T5/00 G06K9/62

    摘要: Blind image deblurring with a cascade architecture is described, for example, where photographs taken on a camera phone are deblurred in a process which revises blur estimates and estimates a blur function as a combined process. In various examples the estimates of the blur function are computed using first trained machine learning predictors arranged in a cascade architecture. In various examples a revised blur estimate is calculated at each level of the cascade using a latest deblurred version of a blurred image. In some examples the revised blur estimates are calculated using second trained machine learning predictors interleaved with the first trained machine learning predictors.

    摘要翻译: 描述了具有级联架构的盲目图像去模糊,例如,在修改模糊估计并且将模糊功能估计为组合处理的过程中,在照相机电话上拍摄的照片被去毛刺的情况下被描述。 在各种示例中,使用以级联架构布置的第一训练机器学习预测器来计算模糊函数的估计。 在各种示例中,使用模糊图像的最新去模糊版本在级联的每个级别处计算修正的模糊估计。 在一些示例中,使用与第一训练机器学习预测器交错的第二训练机器学习预测器来计算修正的模糊估计。