摘要:
Real-time stereo matching is described, for example, to find depths of objects in an environment from an image capture device capturing a stream of stereo images of the objects. For example, the depths may be used to control augmented reality, robotics, natural user interface technology, gaming and other applications. Streams of stereo images, or single stereo images, obtained with or without patterns of illumination projected onto the environment are processed using a parallel-processing unit to obtain depth maps. In various embodiments a parallel-processing unit propagates values related to depth in rows or columns of a disparity map in parallel. In examples, the values may be propagated according to a measure of similarity between two images of a stereo pair; propagation may be temporal between disparity maps of frames of a stream of stereo images and may be spatial within a left or right disparity map.
摘要:
A method of up-sampling binary images for segmentation is described. In an embodiment, digital images are down-sampled before segmentation. The resulting initial binary segmentation, which has a lower resolution than the original image, is then up-sampled and smoothed to generate an interim non-binary solution which has a higher resolution than the initial binary segmentation. The final binary segmentation for the image is then computed from the interim non-binary solution based on a threshold. This method does not use the original image data in inferring the final binary segmentation solution from the initial binary segmentation. In an embodiment, the method may be applied to all images and in another embodiment, the method may be used for images which comprise a large number of pixels in total or in single dimension and smaller images may not be down-sampled before segmentation.
摘要:
Detecting material properties such reflectivity, true color and other properties of surfaces in a real world environment is described in various examples using a single hand-held device. For example, the detected material properties are calculated using a photometric stereo system which exploits known relationships between lighting conditions, surface normals, true color and image intensity. In examples, a user moves around in an environment capturing color images of surfaces in the scene from different orientations under known lighting conditions. In various examples, surfaces normals of patches of surfaces are calculated using the captured data to enable fine detail such as human hair, netting, textured surfaces to be modeled. In examples, the modeled data is used to render images depicting the scene with realism or to superimpose virtual graphics on the real world in a realistic manner.
摘要:
Image restoration cascades are described, for example, where digital photographs containing noise are restored using a cascade formed from a plurality of layers of trained machine learning predictors connected in series. For example, noise may be from sensor noise, motion blur, dust, optical low pass filtering, chromatic aberration, compression and quantization artifacts, down sampling or other sources. For example, given a noisy image, each trained machine learning predictor produces an output image which is a restored version of the noisy input image; each trained machine learning predictor in a given internal layer of the cascade also takes input from the previous layer in the cascade. In various examples, a loss function expressing dissimilarity between input and output images of each trained machine learning predictor is directly minimized during training. In various examples, data partitioning is used to partition a training data set to facilitate generalization.
摘要:
Blind image deblurring with a cascade architecture is described, for example, where photographs taken on a camera phone are deblurred in a process which revises blur estimates and estimates a blur function as a combined process. In various examples the estimates of the blur function are computed using first trained machine learning predictors arranged in a cascade architecture. In various examples a revised blur estimate is calculated at each level of the cascade using a latest deblurred version of a blurred image. In some examples the revised blur estimates are calculated using second trained machine learning predictors interleaved with the first trained machine learning predictors.
摘要:
Blind image deblurring with a cascade architecture is described, for example, where photographs taken on a camera phone are deblurred in a process which revises blur estimates and estimates a blur function as a combined process. In various examples the estimates of the blur function are computed using first trained machine learning predictors arranged in a cascade architecture. In various examples a revised blur estimate is calculated at each level of the cascade using a latest deblurred version of a blurred image. In some examples the revised blur estimates are calculated using second trained machine learning predictors interleaved with the first trained machine learning predictors.
摘要:
Image restoration cascades are described, for example, where digital photographs containing noise are restored using a cascade formed from a plurality of layers of trained machine learning predictors connected in series. For example, noise may be from sensor noise, motion blur, dust, optical low pass filtering, chromatic aberration, compression and quantization artifacts, down sampling or other sources. For example, given a noisy image, each trained machine learning predictor produces an output image which is a restored version of the noisy input image; each trained machine learning predictor in a given internal layer of the cascade also takes input from the previous layer in the cascade. In various examples, a loss function expressing dissimilarity between input and output images of each trained machine learning predictor is directly minimized during training. In various examples, data partitioning is used to partition a training data set to facilitate generalization.
摘要:
A computing device is described herein that is configured to select a pixel pair including a foreground pixel of an image and a background pixel of the image from a global set of pixels based at least on spatial distances from an unknown pixel and color distances from the unknown pixel. The computing device is further configured to determine an opacity measure for the unknown pixel based at least on the selected pixel pair.
摘要:
Image deblurring is described, for example, to remove blur from digital photographs captured at a handheld camera phone and which are blurred due to camera shake. In various embodiments an estimate of blur in an image is available from a blur estimator and a trained machine learning system is available to compute parameter values of a blur function from the blurred image. In various examples the blur function is obtained from a probability distribution relating a sharp image, a blurred image and a fixed blur estimate. For example, the machine learning system is a regression tree field trained using pairs of empirical sharp images and blurred images calculated from the empirical images using artificially generated blur kernels.
摘要:
Detecting material properties such reflectivity, true color and other properties of surfaces in a real world environment is described in various examples using a single hand-held device. For example, the detected material properties are calculated using a photometric stereo system which exploits known relationships between lighting conditions, surface normals, true color and image intensity. In examples, a user moves around in an environment capturing color images of surfaces in the scene from different orientations under known lighting conditions. In various examples, surfaces normals of patches of surfaces are calculated using the captured data to enable fine detail such as human hair, netting, textured surfaces to be modeled. In examples, the modeled data is used to render images depicting the scene with realism or to superimpose virtual graphics on the real world in a realistic manner.