Abstract:
Techniques for limiting cell reselection in response to a variable channel are disclosed. In one aspect, a measurement of received pilot power from a base station is used as an indication of channel quality. In another aspect, hysteresis is applied to limit cell reselection, wherein the hysteresis is greater in relatively higher quality channel environments and lower in relatively lower channel quality environments. Various other aspects are also presented. These aspects have the benefit of reducing cell reselection, thus increasing time spent in low-power mode, thereby reducing power consumption and increasing standby time.
Abstract:
Techniques for searching neighbor cells within a fixed time duration are disclosed. In one embodiment, cells in a monitored list are ranked. A first subset of the ranked cells are searched during each cycle in a series of cycles, and a subset of the remainder of ranked cells is searched in each cycle, the subset varying from cycle to cycle. In another embodiment, the ranking and searching of a subset of the ranked list of cells is performed when the number of monitored cells is greater than a pre-determined search number. In yet another embodiment, the complete list of monitored cells is searched when the number of monitored cells is less than or equal to a pre-determined search number. In various embodiments, the searching comprises one or more of intra-frequency, inter-frequency, or inter-RAT searching. Various other embodiments are also presented. Benefits include allowing prescribed levels of intra-frequency, inter-frequency and/or inter-RAT search to be performed allowing for improved base station selection and therefore improved performance and system capacity.
Abstract:
Techniques for cell reacquisition and reselection that increases time spent in low-power mode while effectively monitoring neighbor cells are disclosed. In one aspect, one or more windows around the expected location of the serving cell are searched in the period of time prior to the page indicator. In another aspect, intra-frequency neighbor cells are searched first to determine reselection candidates. Various other aspects are also presented. These aspects have the benefit of increasing time spent in low-power mode, thereby reducing power consumption and increasing standby time.
Abstract:
A rake receiver finger assignor is configured to assign a rake receiver finger to a time offset between identified signal path time offsets in accordance with a concentration of identified signal paths from a transmitter to a rake receiver. In accordance with the exemplary embodiment, a number of identified signal paths having time offsets within a time window are observed to determine the concentration of signal paths identified by a path searcher. If the number of identified signal paths indicates a concentrated distribution of signal paths such as during a fat path condition, at least one rake finger is assigned between at a time offset between two identified signal paths.
Abstract:
An access terminal (102) reacquires a system frame number (SFN) when a difference between a continuous counter elapsed time (220) and a calculated elapsed time (222) exceeds a threshold. The continuous counter elapsed time (220) is generated by a continuous counter (122) remaining active during a sleep state of the access terminal (102) and the calculated elapsed time (222) is based on a SFN derived from a counter value generated by a discontinuous counter (124) that is deactivated during the sleep state. In one aspect, the continuous counter (122) may be clocked by a continuous clock (118) during a sleep mode and the discontinuous counter (124) may be clocked by a faster clock (120) that is deactivated during the sleep mode. During reactivation after the sleep mode, the discontinuous counter (120) is set, at the counter set time, to a reset counter value (126) corresponding to an SFN indicated by the continuous counter (122).
Abstract:
The disclosure is directed to techniques for performing service signal searches with reduced power consumption when a wireless communication device is operating out of service. The techniques include placing the wireless communication device in a “deep sleep” mode when the wireless communication device is not in service. When operating in the deep sleep mode, the wireless communication device reduces power consumption by not looking for paging signals or searching for service signals. The wireless communication device then may periodically enter a wake-up period during which power consumption is increased to perform signal searches in one or more frequency bands. The wireless communication device returns to the deep sleep mode when the signal searches are unsuccessful.
Abstract:
A terminal communicates with a first wireless network and obtains a list of cells in a second wireless network to measure. The terminal operates in a compressed mode and receives multiple transmission gap pattern sequences for different measurement purposes, e.g., RSSI measurements, BSIC identification, and BSIC re-confirmation. The terminal utilizes each transmission gap for its designated purpose or an alternate purpose. For each transmission gap, the designated purpose for the transmission gap is ascertained, and whether the transmission gap is usable for an alternate purpose is also determined based on at least one criterion. The transmission gap is used for the alternate purpose if the at least one criterion is satisfied and is used for the designated purpose otherwise. For example, a transmission gap designated for RSSI measurement may be used for BSIC identification, a transmission gap designed for BSIC identification or BSIC re-confirmation may be used for RSSI measurement, and so on.
Abstract:
Techniques for efficiently performing system search to obtain service from a wireless system as quickly as possible are described. A terminal initially looks for service from a first (e.g., W-CDMA) system. The terminal identifies network(s) in the first system from which service was received in the past and performs acquisition on each network to look for service. If service is not found for the first system, then the terminal performs a search for a second (e.g., GSM) system. If service is found on the second system, then the terminal obtains service from the second system and avoids a frequency scan for the first system. Otherwise, the terminal performs a frequency scan for the first system using the search results for the second system. The terminal may obtain a list of RF channels detected for the second system and may omit these RF channels and possibly some other RF channels around these RF channels from the frequency scan.
Abstract:
A parameter estimator for estimating one or more parameter(s) from a correlation function derived from a signal using a dynamically variable integration time is described. The parameter estimator may be employed in a subscriber station to estimate the time of arrival of one or more base station or sector pilot signals in a wireless communication system. This information may be utilized in an overall advanced forward link trilateration (AFLT) process for estimating the location of the subscriber station.
Abstract:
A system and method to reduce-the effects of TOA errors. A mobile unit, generates a correlation pulse when a signal transmitted from a base station is detected. The transmitted signal may be reflected or defracted such that multipath signals arrive at the mobile unit, leading to distortion in the generated correlation pulse and errors in accurate TOA measurements. The system models the response function and calculates the width of the pulse using the modeling function with a dynamically adjustable factor to indicate at what point down from the peak the pulse width will be calculated. Based on calculation of pulse width, a type of multipath signal may be determined and an appropriate correction factor applied to the measured TOA to provide a more accurate TOA determination. The system may apply correction factors to TOA signals from base stations in a mobile telephone unit or from signals received from GPS satellites.