Abstract:
Systems and methods for retrieving data from an access point within a wireless communications system are described. At least one embodiment includes a method for retrieving buffered data in a wireless communication system. In accordance with some embodiments, the method comprises transmitting a paging request to a plurality of access points while in a low power mode, receiving a Paging Indication element or a TIM Response element while remaining in low power mode, and exiting low power mode if buffered data is present and retrieving the buffered data. The Paging Indication element or TIM Response element indicates whether buffered data is present.
Abstract:
Disclosed herein are exemplary techniques for managing power in a direct wireless link between two wireless devices. The present invention provides at least three direct link power management techniques: Fast Resumption Mode (FRM) wherein the direct link is resumed automatically at a specified timing synchronization function (TSF); Slow Resumption Mode (SRM) wherein the direct link may be resumed by sending a Resume-Request via the access point; and Reverse Polling (RP), wherein one peer station of the direct link is continually awake and the other peer station uses reverse polling to start a service period. Thus, a method for power management of a direct wireless link between two wireless devices is disclosed. The method comprising the steps of establishing a direct wireless link between the first wireless device and the second wireless device; transmitting, from a first wireless device, a frame having a time value; receiving, at the second wireless device, the frame from the first wireless device; suspending the direct wireless link a duration determined based on the time value; and resuming the direct wireless link at a time determined based on the time value.
Abstract:
Systems and methods for transmission announcement indication are disclosed. A transmission announcement indication is provided for use inside a communications frame addressed to a destination as an indication that another transmission for that same destination will follow.
Abstract:
Included are embodiments for operating in a wireless environment. At least one embodiment of a method includes setting a first data frame for transmission from a first device to a second device, wherein the first device is configured to operate in a normal power mode that includes utilization of a plurality of active components, wherein setting the first data frame includes determining a time period of communicative inactivity.
Abstract:
Various embodiments of symmetric transmit opportunity (TXOP) truncation (STT) systems and methods are disclosed. One method embodiment, among others, comprises receiving a frame that truncates a TXOP around a first station, and responsive to receiving the frame, sending a second frame that truncates the TXOP around a second station. Others system and method embodiments are disclosed.
Abstract:
Embodiments of communication roaming systems and methods are disclosed. One method embodiment, among others, comprises sending a frame to a station based on an identifier of the station to prompt an immediate response frame, and determining whether the station is suitable for association based on information corresponding to receipt of the immediate response frame or based on non-receipt of the immediate response frame.
Abstract:
Disclosed herein are techniques for power management in wireless networks. Based upon receipt of an indication of the link margin of a receiving wireless device, a transmitting wireless device may adjust its transmit power commensurate with the link margin. The indication of the link margin may be transmitted from the receiving wireless device to the transmitting wireless device periodically. Alternatively, the receiving wireless station may provide the indication of the link margin in response to information received from the transmitting wireless device. In this instance, the indication of the link margin may be included in a piggyback acknowledgement (ACK) frame conventionally used to acknowledge receipt of the information transmitted by the transmitting wireless station.
Abstract:
Various embodiments of systems and methods that provide more power save multi-poll (MPSMP) indication solutions to improve both the channel access efficiency and power saving capability. In one embodiment, for each address destination, a PSMP frame (the multi-poll frame) provides a time interval during which the client station is to receive traffic (downlink time or DLT) and the time interval during which this client station can transmit (uplink time or ULT). At any other time, such a client station may go to sleep and save power, until the next PSMP arrives. The uplink times are scheduled after the downlink times, for specific efficiency reasons. One embodiment of an MPSMP indication method enables the PSMP frame indicate whether another PSMP frame is to follow at the end of the uplink and downlink periods (or schedule) as described in the current PSMP frame, through an MPSMP indication. If the MPSMP indication is set, the client station knows to wake up immediately after the scheduled uplink and downlink times of this PSMP to receive the next PSMP.
Abstract:
Various embodiments of symmetric transmit opportunity (TXOP) truncation (STT) systems and methods are disclosed. One method embodiment, among others, comprises receiving a frame that truncates a TXOP around a first station, and responsive to receiving the frame, sending a second frame that truncates the TXOP around a second station. Others system and method embodiments are disclosed.
Abstract:
Disclosed herein are exemplary techniques for power conservation in a wireless network. A wireless device identifies another wireless device suitable to act as a relay node. Uplink information is transmitted to the other wireless device, which is in turn relayed to an access point for transmission to its destination. Downlink information may be transmitted directly from the access point to the wireless device. The use of a relay node may reduce transmit power consumption as the relay node may be closer to, or support a higher transmit rate, than the access point with which the wireless device is associated.