Abstract:
A method of high reliability and early data transmission (EDT) is proposed. EDT allows one uplink transmission (optionally) followed by one downlink data transmission during a random-access channel (RACH) procedure, which can reduce the signaling overhead and save UE power. To improve reliability, for uplink EDT, there would be different set of RACH reattempt parameters in the UE for different types of access. For downlink EDT, there would be an indication in the paging message to trigger whether the UE would use legacy RACH or not. Further, the configuration for PRACH resource for EDT can be independent to legacy PRACH resource configuration. Under certain conditions, UE can fallback to legacy RACH procedure for high reliability.
Abstract:
A method of system information (SI) acquisition with reduced signaling overhead is proposed. To reduce SI broadcast overhead, the quantity of periodic SI broadcast and the frequency of on-demand SI acquisition need to be reduced. To reduce the frequency of on-demand SI acquisition, rather than always re-acquire SI when serving cell changes, UE is enabled to reuse stored SI information elements across different cells. More specifically, a novel concept of SI ID is introduced to be associated with an area that applies the same SI configuration. UE can reuse stored SI information elements if the stored SI information elements are valid based on the SI ID and validity check.
Abstract:
A method of reporting UE measurement state information in RLF report is provided. A UE performs radio measurements of a serving cell and neighbor cells in a mobile communication network. The UE evaluates a measurement reporting criteria and attempts to access the network to deliver a measurement report if the criteria is met. The UE then detects a radio link failure or a handover failure event and reconnects to the network by performing RRC reestablishment or RRC establishment. Finally, the UE transmits a failure event report to the network. The failure event report comprises UE measurement state information corresponds to the failure event. The UE measurement state information helps the network to determine whether to apply corrective actions to mitigate the failure.
Abstract:
Various examples and schemes pertaining to differentiation of user equipment (UE) in narrowband IoT (NB-IoT) are described. A processor of a UE generates a signal containing UE-specific information that is specific to the UE. The processor transmits the signal to a network node of a wireless network. The processor then receives a response from the network node, the response comprising an access stratum (AS) configuration created by the network node based on the UE-specific information. The processor also applies the AS configuration which reduces power consumption of the UE.
Abstract:
Described herein are a method and a mobile communication device that support data preprocessing in a mobile communication system, and in particular, a method and a mobile communication device to report buffer status that can indicate an amount of preprocessed data, for example when using 5G NR technology. An amount of preprocessed data is determined and transmitted to a network element by a user equipment (UE) in a buffer status report (BSR).
Abstract:
A novel and efficient DRX operation mechanism is proposed to maintain the reliability and energy efficiency for NB-IOT systems. In NB-IOT systems, the length of a NB-PDCCH (with repetition) and the interval between two NB-PDCCHs are extended and can be reconfigured by eNB for each UE. The eNB can also adaptively adjusts the DRX parameters accordingly. NB-IOT UE monitors the NB-PDCCH in DRX ON duration, which is configured in number of NB-PDCCHs. Specifically, if a DRX timer duration is configured by the eNB in units of a PDCCH period, the UE should calculate the timer in terms of number of PDCCH user-specific search spaces (USSs), or in terms of PDCCH subframes by multiplying the number of PDCCH periods with the PDCCH repetition level.
Abstract:
A tagging mechanism supporting different QoS categories for IP/Port services in a cellular radio network is proposed. Tags are used to differentiate different types of services and corresponding QoS requirements. At the sender side, the sender of the IP packets is able to distinguish different types of services by tagging one or multiple bits for finer QoS control. For downlink IP traffic, the tagging function can be done at the base station. For uplink IP traffic, the tagging function can be done at the UE. At the receiver side, the receiver delivers the IP packets using out-of-sequence delivery for delay sensitive packets. With tagging and out-of-sequence delivery, the delay sensitive packets can reduce CN latency and transmission latency.
Abstract:
A method of inter-RAT failure event report is proposed. A UE detects a failure event in a first cell served by a first base station, and the first cell belongs to a first RAT. The failure event may include a radio link failure or a handover failure. The UE then performs an RRC establishment procedure with a second cell served by a second base station, and the second cell belongs to a second RAT. After the RRC establishment, the UE transmits a failure event report to the wireless network. The failure event can be a radio link failure, or be associated with a mobility command such as a handover command. By providing more reliable information in the failure event report than a network solution could provide, inter-RAT mobility performance can be improved.
Abstract:
Methods and apparatus are provided for load balancing and load distribution using a set of alternative configurations. In one novel aspect, the UE receives and stores a set of alternative configurations. The UE selects a new alternative configuration upon detecting one or more triggering events and performs a cell selection based on the new alternative configuration. In one embodiment, the UE receives the set of alternative configurations from a broadcast signaling channel. In another embodiment, the UE applies a new configuration upon detecting one or more triggering events. In another embodiment, the UE selects the new alternative configuration using a hash function based on a UE identifier, wherein the hash function hashes to a priority class, and wherein each priority class maps to an alternative configuration. In one embodiment, a prohibition timer is used to prevent too frequent resource changes.
Abstract:
A method and apparatus for transmitter assisted Quality of Service (QoS) measurement. Time information is generated by the transmitter and transmitted along with a data transmission. A receiving device determines a QoS measurement based upon the time information and the received data. The time information indicates when the data was made available for transmission, which data transmission blocks belong to a single data transmission, and when a transmitter buffer was emptied. The QOS measurements are performance measurement such as, latency measurements and throughput measurements. The time information indicates a time reference relative to the timing of a wireless interface. The time reference is a System Frame Number (SFN), a Connection Frame Number (CFN), a relative count of frame numbers, a count of sub-frames, or a count of Time Transmission Intervals (TTIs). An aggregated QOS measurement is generated based upon the QOS measurement.