Abstract:
An incremental scheduling scheme is proposed in a wireless communication system with beamforming. In an initial stage (stage-1), coarse scheduling plan is granted via control beam transmission. In a second stage (stage-2), fine scheduling plan is granted via dedicated beam transmission. Such incremental scheduling scheme provides load balancing for overhead channels on control/dedicated beams via stage-2 scheduling. It utilizes dedicated beam transmission that is more resource efficient and more UE-specific. Furthermore, it provides UE natural power-saving opportunities via stage-1 scheduling.
Abstract:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several control plane (C-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. Termed macro-assisted mmWave, an effective end-to-end integration of the futuristic mmWave small cells and microwave macro cells shall promise the benefits of both yet avoid individual limitations. The proposed On-demand Reconfiguration C-Place Architecture (ORCA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
An incremental scheduling scheme is proposed in a wireless communication system with beamforming. In an initial stage (stage-1), coarse scheduling plan is granted via control beam transmission. In a second stage (stage-2), fine scheduling plan is granted via dedicated beam transmission. Such incremental scheduling scheme provides load balancing for overhead channels on control/dedicated beams via stage-2 scheduling. It utilizes dedicated beam transmission that is more resource efficient and more UE-specific. Furthermore, it provides UE natural power-saving opportunities via stage-1 scheduling.
Abstract:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several control plane (C-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. Termed macro-assisted mmWave, an effective end-to-end integration of the futuristic mmWave small cells and microwave macro cells shall promise the benefits of both yet avoid individual limitations. The proposed On-demand Reconfiguration C-Place Architecture (ORCA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.
Abstract:
A novel Macro-assisted Multi-Connectivity (MC) mobility scheme for UEs traversing clusters of (mmWave) small cells (small-BS or SBS) under the coverage of the same 5G or LTE Macro-cell (macro-BS or MBS) is proposed. It keeps the same Control/User split scheme and C-Plane anchor at MBS, same as in LTE Dual Connectivity (DuCo or DC), yet extending DuCo with a multi-connectivity split bearer user plane. For example, MBS adopts a multi-way packet data convergence protocol (PDCP) bearer split based on routing weighted by channel quality, SBS's resource availability, etc. with or without inter-BS flow control. Utilizing the MC user plane, a macro-assisted make-before-break MC mobility can be enabled.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
A method of providing spatial diversity for critical data delivery in a beamformed mmWave smallcell is proposed. The proposed spatial diversity scheme offers duplicate or incremental data/signal transmission and reception by using multiple different beams for the same source and destination. The proposed spatial diversity scheme can be combined with other diversity schemes in time, frequency, and code, etc. for the same purpose. In addition, the proposed spatial diversity scheme combines the physical-layer resources associated with the beams with other resources of the same or different protocol layers. By spatial signaling repetition to avoid Radio Link Failure (RLF) and Handover Failure (HOF), mobility robustness can be enhanced. Mission-critical and/or time-critical data delivery can also be achieved without relying on retransmission.
Abstract:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several user plane (U-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. The proposed On-demand Reconfiguration U-Plane Architecture (ORUA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.