INTEGRATED DUAL-WAVEGUIDE ACOUSTO-OPTIC MODULATOR

    公开(公告)号:US20240369901A1

    公开(公告)日:2024-11-07

    申请号:US18570953

    申请日:2022-04-15

    Abstract: An integrated acousto-optic modulator operates with an extremely high extinction ratio (e.g.,>50 dB) thanks to two widely separated two-dimensional (2D) waveguides. These 2D waveguides are formed on or adjacent to a one-dimensional (ID) wave-guide far enough apart (e.g., 10-100 pm apart) to prevent evanescent coupling between them. An acoustic transducer formed on the surface of the ID waveguide switches light from one 2D waveguide to the other 2D waveguide via the ID waveguide. The acoustic wave emitted by the acoustic transducer forms a traveling grating that overlaps with one 2D waveguide. diffracting light from that 2D waveguide into the ID waveguide, which guides the light to the other 2D waveguide. A lateral grating coupler diffracts this light from the ID waveguide into a mode guided by the other 2D waveguide. This acoustic modulator acts as a switch suitable for use in quantum and atomic systems.

    SILICON NANO LIGHT EMITTING DIODES

    公开(公告)号:US20230139185A1

    公开(公告)日:2023-05-04

    申请号:US17765361

    申请日:2021-12-10

    Abstract: Light-emitting diodes having radiative recombination regions with deep sub-micron dimensions are described. The LEDs can be fabricated from indirect bandgap semiconductors and operated under forward bias conditions to produce intense light output from the indirect bandgap material. The light output per unit emission area can be over 500 W cm−2, exceeding the performance of even high brightness gallium nitride LEDs.

    SWEPT-SOURCE RAMAN SPECTROSCOPY SYSTEMS AND METHODS

    公开(公告)号:US20210116298A1

    公开(公告)日:2021-04-22

    申请号:US16853811

    申请日:2020-04-21

    Abstract: In swept source Raman (SSR) spectroscopy, a swept laser beam illuminates a sample, which inelastically scatters some of the incident light. This inelastically scattered light is shifted in wavelength by an amount called the Raman shift. The Raman-shifted light can be measured with a fixed spectrally selective filter and a detector. The Raman spectrum can be obtained by sweeping the wavelength of the excitation source and, therefore, the Raman shift. The resolution of the Raman spectrum is determined by the filter bandwidth and the frequency resolution of the swept source. An SSR spectrometer can be smaller, more sensitive, and less expensive than a conventional Raman spectrometer because it uses a tunable laser and a fixed filter instead of free-space propagation for spectral separation. Its sensitivity depends on the size of the collection optics. And it can use a nonlinearly swept laser beam thanks to a wavemeter that measures the beam's absolute wavelength during Raman spectrum acquisition.

    APPARATUS, SYSTEMS, AND METHODS FOR TALBOT SPECTROMETERS

    公开(公告)号:US20200103281A1

    公开(公告)日:2020-04-02

    申请号:US16704444

    申请日:2019-12-05

    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.

Patent Agency Ranking