MULTIFUNCTIONAL MICROELECTRONICS FIBERS AS IMPLANTABLE BIOELECTRONIC INTERFACES

    公开(公告)号:US20250010095A1

    公开(公告)日:2025-01-09

    申请号:US18710934

    申请日:2022-11-16

    Abstract: Multifunctional microelectronics fiber probes can be chronically implanted in tissue of awake-behaving animals for understanding brain-viscera communication. These fiber probes can be made using thermal drawing to make hundreds of meters of flexible fiber that incorporates features such as light sources, electrodes, thermal sensors, and microfluidic channels in a multilayered configuration. The fiber mechanics can be tuned for two distinct device layouts: (1) higher-modulus, flexible brain fibers for implantation into deep-brain; and (2) soft, compliant gut fibers for implantation into the small intestine. Brain fibers can modulate the deep-brain mesolimbic reward pathway. Gut fibers can perform peripheral optogenetic stimulation of vagal afferents from the intestine to stimulate brain reward neurons. Brain and gut fibers can be connected to a control module, for example, with a coiled, stretchable interconnect that is more flexible and stretches more than even soft gut fibers, in dual-organ (gut-brain) implantation.

    Tissue-Integrating Neural Interfaces
    4.
    发明公开

    公开(公告)号:US20230359276A1

    公开(公告)日:2023-11-09

    申请号:US18314317

    申请日:2023-05-09

    CPC classification number: G06F3/015 A61B5/6868

    Abstract: Solvent evaporation or entrapment-driven (SEED) integration is a rapid, robust, and modular approach to creating multifunctional fiber-based neural interfaces. SEED integration brings together electrical, optical, and microfluidic modalities within a co-polymer comprised of watersoluble poly(ethylene glycol) tethered to water-insoluble poly(urethane) (PU-PEG). The resulting neural interfaces can perform optogenetics and electrophysiology simultaneously. They can also be used to deliver cellular cargo with high viability. Upon exposure to water, PU-PEG cladding spontaneously forms a hydrogel, which, in addition to enabling integration of modalities, can harbor small molecules and nanomaterials that can be released into local tissue following implantation. For example, the hydrogel of a SEED-integrated neural interface can host a custom nanodroplet-forming block polymer for delivery of hydrophobic small molecules in vitro and in vivo. SEED integration widens the chemical toolbox and expands the capabilities of multifunctional neural interfaces.

Patent Agency Ranking