Abstract:
In detecting a displacement of a cantilever (2) by a displacement detecting mechanism (5) and allowing a probe (1) and a sample (8) to approach each other by at least one of a coarse-movement mechanism (13) and a vertical direction fine-movement mechanism (11) at the same time, an excitation mechanism (4) excites the cantilever (2) with a first excitation condition and the probe (1) and the sample (8) are allowed to approach each other with a first stop condition, and then the cantilever (2) is excited with a second excitation condition different from the first excitation condition, a second stop condition is set, and the probe (1) and the sample (8) are allowed to approach each other by the at least one of the vertical direction fine-movement mechanism (11) and the coarse-movement mechanism (13) until the second stop condition is satisfied.
Abstract:
In detecting a displacement of a cantilever (2) by a displacement detecting mechanism (5) and allowing a probe (1) and a sample (8) to approach each other by at least one of a coarse-movement mechanism (13) and a vertical direction fine-movement mechanism (11) at the same time, an excitation mechanism (4) excites the cantilever (2) with a first excitation condition and the probe (1) and the sample (8) are allowed to approach each other with a first stop condition, and then the cantilever (2) is excited with a second excitation condition different from the first excitation condition, a second stop condition is set, and the probe (1) and the sample (8) are allowed to approach each other by the at least one of the vertical direction fine-movement mechanism (11) and the coarse-movement mechanism (13) until the second stop condition is satisfied.
Abstract:
Provided is a cantilever that is capable of bending and deforming in an active manner by itself. The cantilever includes: a lever portion having a proximal end that is supported by a main body part; and a resistor member that is formed in the cantilever and generates heat when a voltage is applied, to thereby deform the lever portion by thermal expansion due to the heat.
Abstract:
A displacement detection mechanism for a scanning probe microscope capable of performing measurement quickly with high precision even if an objective lens or an illumination system is arranged above or below a sample or a cantilever, and a scanning probe microscope comprising it. The displacement detection mechanism (112) for a scanning probe microscope comprising a supporting section (22) for supporting a cantilever (20), a light source (114) for irradiating a reflective surface (14) with light, and a light receiving section (121) for receiving light reflected off the reflective surface (14), and detecting displacement of the cantilever (20) based on the light receiving position of the light receiving section (121), wherein the rear end of the cantilever (20) is secured to the supporting section (22), and the above light is allowed to impinge on the reflective surface (14), while inclining toward the X axis and Y axis, from above regions B and C on the distal end side of the cantilever (20) out of regions A, B, C and D sectioned, when viewed from the above, by the Y axis extending in the longitudinal direction of the cantilever (20) and the X axis passing through the reflective surface (14) and extending in the direction intersecting the Y axis perpendicularly.
Abstract:
By resistor attached by a piezoelectric element, measurement with high accuracy is possible by strain of the piezoelectric element and there is not a trouble by a short, a piezoelectric actuator, the piezoelectric element and a positioning device therewith. The piezoelectric actuator includes; a piezoelectric element which is formed into an arbitrary shape, polarized in an arbitrary direction, and includes electrodes provided on at least two surfaces opposed in a thickness direction thereof; a driver power supply for applying a voltage between the electrodes to generate strain in the piezoelectric element; a driver power supply for applying a voltage to generate strain in the piezoelectric element; resistors provided on the electrodes through intermediation of insulators; and a displacement detection device connected with the resistors; The electrodes of the piezoelectric element on which the resistors are provided are set at a ground potential.
Abstract:
A scanning probe microscope having a cantilever holder is provided which gives a cantilever great amplitude by a small-sized vibrator configurable in a limited space and is stably operated even in environments of high viscous drag such as a liquid. A cantilever base part of a cantilever is fixed to a fixing part of a scanning probe microscopy cantilever holder. A vibrator is mounted on the fixing part. When it is defined that the front side is the side close to a probe and the rear side is the side close to a supporting part of the fixing part along in the longitudinal direction of the cantilever, the vibrator displaces the front and rear sides of the fixing part of the cantilever holder to each other in the opposite directions within the plane orthogonal to the sample surface to vibrate the cantilever in a liquid.
Abstract:
The cylindrical piezoelectric actuator which comprised a piezoelectric element which provided electrode in each of an inner peripheral face and an outer peripheral face which was cylindrical at least, and drive power supply to drive it. And the outer side electrode of the piezoelectric element covered the substantially circumferential outer face entirety and it was connected to a ground potential, and the electrode in the internal perimeter surface connected to drive power supply.
Abstract:
The cylindrical piezoelectric actuator which comprised a piezoelectric element which provided electrode in each of an inner peripheral face and an outer peripheral face which was cylindrical at least, and drive power supply to drive it. And the outer side electrode of the piezoelectric element covered the substantially circumferential outer face entirety and it was connected to a ground potential, and the electrode in the internal perimeter surface connected to drive power supply.
Abstract:
An inching mechanism for a scanning probe microscope capable of performing measurement with high precision while enhancing the scanning speed by a probe furthermore, and a scanning probe microscope comprising it. The inching mechanism for a scanning probe microscope which is provided in a scanning probe microscope (SPM) (1) having a stage (16) for mounting a sample S, and a probe (20) approaching closely to or touching the surface of the sample S, characterized in that the inching mechanism comprises a first drive section and a second drive section provided independently, a probe inching mechanism (26) having the first drive section and inching, by the first drive section, the probe (20) in the X direction and Y direction parallel with the surface of the sample S and intersecting each other, and a stage inching mechanism (27) having the second drive section and inching, by the second drive section, the stage (16) in the Z direction perpendicular to the surface of the sample S.
Abstract:
The optical displacement-detecting mechanism has: a light source for irradiating a target for measurement with light; a light source-driving circuit for driving the light source; an optical detector made from a semiconductor for receiving light after the irradiation of the target for measurement by the light source and converting the light into an electric signal thereby to detect an intensity of light; and an amplifier including a current-voltage conversion circuit for performing current-to-voltage conversion on a detection signal of the optical detector with a predetermined amplification factor. In the optical displacement-detecting mechanism, a light source having a spectrum half width of 10 nm or larger is used, whereby the light source can be driven with an output power of 2 mW or larger without generating mode hop noise and optical feedback noise.