摘要:
A carbon material and a method of manufacturing the carbon material are provided that can improve hardness and physical properties while fully gaining the benefit of SPS method, which makes it possible to obtain a dense carbon material with very short time. The carbon material is manufactured by a first step of filling mixture powder containing a carbon aggregate and a binder in a mold, and a second step of sintering the mixture powder by a spark plasma sintering method while compressing the mixture powder. The carbon material is characterized by having a Shore hardness HSD value of 60 or greater, and having a thermal expansion anisotropy ratio, an electrical resistivity anisotropy ratio, or a thermal conductivity anisotropy ratio, of 1.5 or greater.
摘要:
Disclosed is a novel electric joining method and apparatus that can overcome the defects associated with the prior art while taking advantage of the technology for the pulse excited sintering process such as spark plasma sintering process or the hot-press joining process. According to the present invention, an electric joining apparatus for joining a plurality of members to be joined at the joining surfaces thereof, comprises: a pair of current-currying electrodes 13, 16 capable of contacting with the members so as to apply electricity to the members; a power supply 17 connected to the pair of energizing electrodes for supplying the energizing electrodes with at least either one of a DC current or a pulsated current; and a pressurizing unit 14 for compressing each of the pair of electrodes against the joining surfaces, wherein the pair of members are sandwiched between the energizing electrodes and applied with at least either one of the DC current or the pulsated current from the power supply under a desired pressure, thus to be joined, without using a die made of graphite.
摘要:
The present invention is a method of loading a desired amount of powder material into a mold which comprises a tubular body having a bore extending therethrough to define a mold cavity. The method comprises the steps of: providing the mold with a lower press core fitted in the lower end of the bore; bringing the mold with said lower press core fitted therein to a powder filling position; displacing the lower press core relative to the mold so as to determine the depth of the top surface of the lower press core from the top surface of the mold; filling an amount of powder material into the mold and strickling off any excessive amount of powder material to the level of the top surface of the mold; pressing at a desired pressure the amount of powder material in the mold to form a powder compact; and displacing the powder compact with the lower press core relative to the mold so as to bring the powder compact to a desired position in the mold.
摘要:
The present invention provides a nano-precision sintering system 1 for sintering a nano-sized powder of a material in the pulse energization and pressure sintering process to obtain a highly purified sintered compact having a nano-sized grain structure, said nano-precision sintering system 1 comprising: at least one pre-process chamber 20 defined by at least one sealed housing 21 having at least one glove and designed to be controlled into a predetermined atmosphere; a sintering process chamber 30 defined by a sealed housing 31 having at least one glove and designed to be controlled into a predetermined atmosphere; a shut-off system 26 disposed in a passage providing communication between the pre-process chamber and the sintering process chamber so as to block the communication between the two chambers selectively while keeping it in an air tight condition; and a pulse energization and pressure sintering machine 50 having a vacuum chamber “C” allowing for the sintering process to be carried out under a vacuum atmosphere, wherein the vacuum chamber is disposed in the sintering process chamber such that the former can be isolated from the latter.
摘要:
A method for advantageously producing sintered eutectic ceramics having a homogenous and dense structure, in particular, a eutectic containing a rare earth aluminate compound. The method allows eutectic powder of alumina and a rare earth aluminate compound to stand at a temperature of 1300-1700° C. for 1-120 minutes under vacuum or in an non-oxidative atmosphere under a pressure of 5-100 MPa using a spark plasma sintering apparatus, thereby causing crystal growth to occur to obtain a rare earth aluminate eutectic structure crystal.
摘要:
A carbon material and a method of manufacturing the carbon material are provided that can improve hardness and physical properties while fully gaining the benefit of SPS method, which makes it possible to obtain a dense carbon material with very short time.The carbon material is manufactured by a first step of filling mixture powder containing a carbon aggregate and a binder in a mold, and a second step of sintering the mixture powder by a spark plasma sintering method while compressing the mixture powder. The carbon material is characterized by having a Shore hardness HSD value of 60 or greater, and having a thermal expansion anisotropy ratio, an electrical resistivity anisotropy ratio, or a thermal conductivity anisotropy ratio, of 1.5 or greater.
摘要:
Disclosed is a novel electric joining method and apparatus that can overcome the defects associated with the prior art while taking advantage of the technology for the pulse excited sintering process such as spark plasma sintering process or the hot-press joining process. According to the present invention, an electric joining apparatus for joining a plurality of members to be joined at the joining surfaces thereof, comprises: a pair of current-currying electrodes 13, 16 capable of contacting with the members so as to apply electricity to the members; a power supply 17 connected to the pair of energizing electrodes for supplying the energizing electrodes with at least either one of a DC current or a pulsated current; and a pressurizing unit 14 for compressing each of the pair of electrodes against the joining surfaces, wherein the pair of members are sandwiched between the energizing electrodes and applied with at least either one of the DC current or the pulsated current from the power supply under a desired pressure, thus to be joined, without using a die made of graphite.
摘要:
The present invention is a method of automatically loading powder material into a sintering mold and subsequently effecting electrical sintering to the powder material in the sintering mold.
摘要:
The present invention provides a nano-precision sintering system 1 for sintering a nano-sized powder of a material in the pulse energization and pressure sintering process to obtain a highly purified sintered compact having a nano-sized grain structure, said nano-precision sintering system 1 comprising: at least one pre-process chamber 20 defined by at least one sealed housing 21 having at least one glove and designed to be controlled into a predetermined atmosphere; a sintering process chamber 30 defined by a sealed housing 31 having at least one glove and designed to be controlled into a predetermined atmosphere; a shut-off system 26 disposed in a passage providing communication between the pre-process chamber and the sintering process chamber so as to block the communication between the two chambers selectively while keeping it in an air tight condition; and a pulse energization and pressure sintering machine 50 having a vacuum chamber “C” allowing for the sintering process to be carried out under a vacuum atmosphere, wherein the vacuum chamber is disposed in the sintering process chamber such that the former can be isolated from the latter.
摘要:
The present invention is a method of loading a desired amount of powder material into a mold which comprises a tubular body having a bore extending therethrough to define a mold cavity. The method comprises the steps of: providing the mold with a lower press core fitted in the lower end of the bore; bringing the mold with said lower press core fitted therein to a powder filling position; displacing the lower press core relative to the mold so as to determine the depth of the top surface of the lower press core from the top surface of the mold; filling an amount of powder material into the mold and strickling off any excessive amount of powder material to the level of the top surface of the mold; pressing at a desired pressure the amount of powder material in the mold to form a powder compact; and displacing the powder compact with the lower press core relative to the mold so as to bring the powder compact to a desired position in the mold.