摘要:
A system and method for providing multi-beam Wi-Fi access points. The system includes one or more Wi-Fi transmit antennas beamformers; one or more Wi-Fi receive antennas or receive beamformers; and a number N of co-channel Wi-Fi access points (APs) and a number of M non co-channel APS, where all APs comply with IEEE802.11xx standard, connected to the Wi-Fi transmit antennas beamformers, wherein the Wi-Fi transmit antennas beamformers are configured to produce a plurality of non spatially adjacent beams of a common frequency, directed at a plurality of Wi-Fi user equipment (UE) such that the directional beams are sufficiently isolated from each other, and at least some of the Wi-Fi UEs communicate simultaneously with the plurality of Wi-Fi access points.
摘要:
A system and method for overriding Carrier-Sense-Multiple-Access/Collision-Avoidance (CSMA/CA) and virtual carrier sense, without harming the traffic that occupies the channel is described herein. Further provided herein are measurements and qualifying criteria for performing the aforementioned channel sharing. The system and method may be based, for example, on opportunistic spatial isolation of nodes from each other and selectively implementing ultra-fast link adaptation.
摘要:
A system that implements multi user multiple inputs multiple outputs (MU MIMO) base station using a plurality of co-located single-user (SU) MIMO base stations is provided herein. The system may include a number N co-located single-user multiple input multiple output (SU-MIMO) bases stations each having a number K MIMO rank, wherein said N co-located SU-MIMO base stations are configured to share a common antennas array, operating over a common frequency band; a front-end MIMO processor connected to said N co-located SU-MIMO base stations and further coupleable to said common antennas array; and a back-end coordinator configured to collaboratively assist in optimizing operation of said N co-located SU-MIMO base stations, such that said N co-located SU-MIMO base stations and said front-end MIMO processor collaboratively implement a multi-user multiple input multiple output (MU-MIMO) base station capable of dynamically separating a coverage area into N*K spatial channels.
摘要:
A system and method may include a plurality of transmit and receive antennas covering one sector of a cellular communication base station; a multi-beam RF beamforming matrix connected to the transmit and receive antennas; a plurality of radio circuitries connected to the multi-beam RF beamforming matrix; and a baseband module connected to the radio circuitries. The multi-beam RF beamforming matrix may be configured to generate one sector beam and two or more directional co-frequency beams pointed at user equipment (UEs) within the sector, as instructed by the baseband module. A number M denotes the number the directional beams and a number N denotes the number of the radio circuitries and wherein M>N.
摘要:
A communication device operating in time division duplex (TDD) mode using multiple antennas is provided herein. The communication device uses receive channel estimation measurements to perform transmit beamforming and multiple input multiple output (MIMO) transmission, based on self-calibration of the various up/down paths via a method of transmission and reception between its own antennas, thus achieving reciprocity mapping between up and down links. Either user equipment (UE) or a base station may routinely perform this self-calibration to obtain the most current correction factor for the channel reciprocity to reflect the most current operating conditions present during TDD MIMO operation.
摘要:
A method and system for applying a calibration procedure to match the peaks and nulls of the transmit and receive antenna patterns of a communication device are provided herein. The system may include: a plurality of antennas having tunable phases and configured for both transmitting and receiving; a plurality of radio circuits configured to transmit and receive via said antennas in a time division duplex (TDD) communication protocol; and a computer processor configured to calculate a weight setting difference between the transmit and the receive antenna pattern, wherein the antenna pattern is a peak-null pattern of the plurality of antennas operating together. The calibration value may enable the calibrated communication device to apply channel reciprocity to the beam-forming and/or nulling applications.
摘要:
A mobile device in a (e.g., full rank N×N) MIMO system is augmented by a plurality of kn antennae coupled to at least one of N beamformers such that the total number of antennae M=Σn=1n=N is greater than the total number of beamformers N. A highest gain anchor (e.g., optimal) antenna set may be selected from among a plurality of antenna sets, each antenna set comprising a different one of the kn antennae for each nth beamformer. The phase(s) of the non-selected kn−1 antennae may be set to align with the phase of the selected anchor antenna for each nth beamformer. Using TDD communication, the highest gain anchor antenna set for transmitting during the uplink periods may be determined using information measured by at least some of the plurality of M antennae while receiving during one or more downlink periods.
摘要翻译:(例如,全级N×N)MIMO系统中的移动设备被耦合到N个波束形成器中的至少一个的多个kn天线增加,使得天线总数M =&Sgr; n = 1n = N更大 可以从多个天线组中选择最高增益锚(例如,最佳)天线组,每个天线组包括用于每个第n个波束形成器的kn天线中的不同的一个天线组。 可以将未选择的kn-1天线的相位设置为与每个第n波束形成器的所选择的锚天线的相位一致。 使用TDD通信,可以在一个或多个下行链路周期期间接收时,使用由多个M个天线中的至少一些测量的信息来确定用于在上行链路周期期间进行发送的最高增益锚天线组。
摘要:
A system and method for overriding Carrier-Sense-Multiple-Access/Collision-Avoidance (CSMA/CA) and virtual carrier sense, without harming the traffic that occupies the channel is described herein. Further provided herein are measurements and qualifying criteria for performing the aforementioned channel sharing. The system and method may be based, for example, on opportunistic spatial isolation of nodes from each other and selectively implementing ultra-fast link adaptation.
摘要:
A system and method for overriding Carrier-Sense-Multiple-Access/Collision-Avoidance (CSMA/CA) and virtual carrier sense, without harming the traffic that occupies the channel is described herein. Further provided herein are measurements and qualifying criteria for performing the aforementioned channel sharing. The system and method may be based, for example, on opportunistic spatial isolation of nodes from each other and selectively implementing ultra-fast link adaptation.
摘要:
A system and method may include a plurality of transmit and receive antennas covering one sector of a cellular communication base station; a multi-beam RF beamforming matrix connected to the transmit and receive antennas; a plurality of radio circuitries connected to the multi-beam RF beamforming matrix; and a baseband module connected to the radio circuitries. The multi-beam RF beamforming matrix may be configured to generate one sector beam and two or more directional co-frequency beams pointed at user equipment (UEs) within the sector, as instructed by the baseband module. A number M denotes the number the directional beams and a number N denotes the number of the radio circuitries and wherein M>N.