Abstract:
A broadband device (105) can detect a proximate narrowband transmission (152) from a narrowband communication device (145). The narrowband transmission (152) can be in close enough proximity (155) to at least one bearer channel of the broadband device (105) to result in interference on the narrowband reception (152) when the broadband device (105) is transmitting and the narrowband communication device (145) is concurrently receiving. Responsive to the detecting, the broadband device (105) can gate a broadband transmission (142) to ensure the broadband transmission (142) does not interfere with the proximate narrowband reception (152). In absence of detecting the narrowband transmission (152), the broadband transmission (142) from the broadband device (105) would not be gated.
Abstract:
A communication system minimizes inter-cell interference and handover holes by providing for a user equipment (UE) to monitor downlink signals from a serving, boundary eNodeB and one or more neighbor eNodeBs, determine a signal quality metric (SQM) for each monitored signal to produce an SQM associated with each eNodeB, and determine a maximum uplink transmit power level (PMAX) for each eNodeB. Based on the determined SQMs and PMAXs, the UE determines a eNodeB of the one or more neighbor eNodeBs with a best SQM and, in response to determining that the neighbor eNodeB of the one or more neighbor eNodeBs with a best SQM is a high power eNodeB, determines a difference between the SQM associated with the high power ENodeB and the SQM associated with the boundary eNodeB. The UE then sets a PMAX for the UE based on the difference determination.
Abstract:
A method and apparatus to mitigate radio frequency interference by a broadband mobile device by detecting, at the broadband mobile device, a geographically or physically proximate narrowband uplink transmission, wherein the narrowband uplink transmission is in close enough spectral proximity to at least one bearer channel of the broadband mobile device to result in interference on the narrowband reception when the broadband mobile device is transmitting and a narrowband mobile device is receiving, determining, based on the detected narrowband uplink transmission, a corresponding narrowband downlink frequency, monitoring the determined narrowband downlink frequency, detecting a narrowband downlink transmission at the monitored narrowband downlink frequency, and in response to detecting the narrowband downlink transmission at the monitored narrowband downlink frequency, modifying a broadband uplink transmission to ensure the broadband uplink transmission does not interfere with narrowband downlink reception.
Abstract:
A converged communication device and a method of providing broadband communication and narrowband communication with the converged communication device. The method includes determining a data rate at a broadband transceiver of the converged communication device. The method also includes determining a signal-to-interference-plus-noise ratio at a narrowband transceiver of the converged communication device. The method further includes assigning a first communication state to the converged communication device when the data rate is greater than a threshold data rate and the signal-to-interference-plus-noise ratio is greater than a threshold signal-to-interference-plus-noise ratio. The method also includes transmitting, at the broadband transceiver, the broadband communication when the converged communication device is in the first communication state. The method further includes transmitting, at the narrowband transceiver, the narrowband communication when the converged communication device is in the first communication state.
Abstract:
A communication system minimizes inter-cell interference and handover holes by providing for a user equipment (UE) to monitor downlink signals from a serving, boundary eNodeB and one or more neighbor eNodeBs, determine a signal quality metric (SQM) for each monitored signal to produce an SQM associated with each eNodeB, and determine a maximum uplink transmit power level (PMAX) for each eNodeB. Based on the determined SQMs and PMAXs, the UE determines a eNodeB of the one or more neighbor eNodeBs with a best SQM and, in response to determining that the neighbor eNodeB of the one or more neighbor eNodeBs with a best SQM is a high power eNodeB, determines a difference between the SQM associated with the high power ENodeB and the SQM associated with the boundary eNodeB. The UE then sets a PMAX for the UE based on the difference determination.