Abstract:
A method and device for zero configuration direct fallback communication is provided. In one aspect a method comprises selecting a channel in a fallback radio band based on at least a portion of at least one system operating parameter for a primary radio band. The method further comprises switching to the selected channel in the fallback radio band. The method also comprises communicating over the selected channel in the fallback radio band.
Abstract:
A method for enabling full duplex direct mode calls between radios in an N:1 slotting ratio TDMA radio system includes detecting a request for a full duplex direct mode call at a first radio, transmitting in a particular slot of a first recurring time slot of N recurring time slots on a first single frequency one of a call request and a call header identifying the call as a full duplex call. Subsequently transmitting, by the first radio, during a plurality of subsequent first recurring time slots, outbound voice and/or data transmissions. And receiving, during a plurality of second recurring time slots of the N recurring time slots, each second recurring timeslot positioned immediately adjacent a respective first recurring time slot in an interleaved manner, inbound voice and/or data transmissions from the second radio and playing back the inbound voice and/or data transmission at the first radio.
Abstract:
A process for resolving call collisions in a digital conventional direct mode includes monitoring a direct mode communication channel for transmissions from other direct mode radios in the plurality of direct mode radios. In response to detecting a new call request: identifying a last radio to transmit on the direct mode channel, transmitting a new call request for receipt by the last direct mode radio to transmit, monitoring the direct mode channel for a response from the last radio to transmit, and if a call grant granting the new call request is received from the last radio to transmit, initiating the new direct mode call on the direct mode communication channel. If the call grant is not received, at least temporarily refraining from initiating the new direct mode call.
Abstract:
A method and device for sharing synchronized direct mode time division multiple access (TDMA) timeslots among a plurality of direct mode radios includes monitoring, by a first direct mode radio, other radios' usage of a plurality of available timeslots on a direct mode radio frequency (RF) and, for each received new transmission, storing an indication of the timeslot used by the new transmission and storing a system partitioning identifier associated with the new transmission. Dynamically determining, by the first radio and as a function of the monitoring, a first preferred transmit timeslot determined to be less likely to interfere with the other direct mode radios. Responsive to detecting a request to transmit a new direct mode call, first determining if the first preferred transmit timeslot is available, and if so, transmitting the new call in the first preferred transmit timeslot on the direct mode radio frequency.
Abstract:
A process for consolidating location-dependent information in a two-way radio system includes determining a geographic location of each subscriber unit in a group of subscriber units active within a radio frequency (RF) coverage area of a base station (BS), determining a single representative geographic location for the group of subscriber units based on their geographic locations, requesting location-dependent information from a content provider using the representative geographic location, and causing the location-dependent information to be broadcast within the RF coverage area.
Abstract:
A wireless method, apparatus, and system provide simultaneous transacting of voice and data on adjacent timeslots through a combination of channel access rules and sacrificing small audio portions when required. This includes wirelessly operating on at least two timeslots which are adjacent to one another, operating voice on a first timeslot of the at least two timeslots and monitoring a second timeslot of the at least two timeslots for data, and, responsive to a data transmission request and receiving voice on the first timeslot, discarding a portion of the voice in the first timeslot to provide a larger guard time for programming between the first timeslot and the second timeslot and transmitting data in the second timeslot based on the data transmission request.
Abstract:
A process for resolving call collisions in a digital conventional direct mode includes monitoring a direct mode communication channel for transmissions from other direct mode radios in the plurality of direct mode radios. In response to detecting a new call request: identifying a last radio to transmit on the direct mode channel, transmitting a new call request for receipt by the last direct mode radio to transmit, monitoring the direct mode channel for a response from the last radio to transmit, and if a call grant granting the new call request is received from the last radio to transmit, initiating the new direct mode call on the direct mode communication channel. If the call grant is not received, at least temporarily refraining from initiating the new direct mode call.
Abstract:
A system and method for interrupting a transmitting device during a call. In the system, calls are transmitted from a first device on a communication channel as a series of channel frames. At predetermined times during the transmission, the transmitting device is configured to drop channel frames, resulting in open channel frame periods where the transmitting device is not transmitting on the communication channel. During these open channel frame periods, the transmitting device is also configured to switch to a receiving mode. Other devices in the system are capable of switching into a transmitting mode during the open channel frame periods and, when applicable, sending an interrupt request on the communication channel to the transmitting device in order to request access to the channel.
Abstract:
Disclosed are methods and systems for compressing location data of a radio for over-the-air transmission. A method includes obtaining raw latitude and raw longitude coordinates reflecting a current location of the client device, the raw latitude coordinate represented by x number of bits and the raw longitude coordinate represented by y number of bits. The raw latitude coordinate is truncated by removing n number of most significant bits from the raw latitude coordinate to create a compressed latitude coordinate. The raw longitude coordinate is truncated by removing m number of most significant bits from the raw longitude coordinate to create a compressed longitude coordinate, where m varies as a function of the value of the raw latitude coordinate. The compressed longitude and compressed latitude coordinates are then transmitted to another network device for decompression and use as an indication of the client device's absolute location.
Abstract:
A process for resolving call collisions in a digital conventional direct mode includes monitoring a direct mode communication channel for transmissions from other direct mode radios in the plurality of direct mode radios. In response to detecting a new call request: identifying a last radio to transmit on the direct mode channel, transmitting a new call request for receipt by the last direct mode radio to transmit, monitoring the direct mode channel for a response from the last radio to transmit, and if a call grant granting the new call request is received from the last radio to transmit, initiating the new direct mode call on the direct mode communication channel. If the call grant is not received, at least temporarily refraining from initiating the new direct mode call.