Abstract:
A method and apparatus to mitigate radio frequency interference by a broadband mobile device by detecting, at the broadband mobile device, a geographically or physically proximate narrowband uplink transmission, wherein the narrowband uplink transmission is in close enough spectral proximity to at least one bearer channel of the broadband mobile device to result in interference on the narrowband reception when the broadband mobile device is transmitting and a narrowband mobile device is receiving, determining, based on the detected narrowband uplink transmission, a corresponding narrowband downlink frequency, monitoring the determined narrowband downlink frequency, detecting a narrowband downlink transmission at the monitored narrowband downlink frequency, and in response to detecting the narrowband downlink transmission at the monitored narrowband downlink frequency, modifying a broadband uplink transmission to ensure the broadband uplink transmission does not interfere with narrowband downlink reception.
Abstract:
A portable communication device operating of a first WWAN can receive an identifier from a WLAN access point indicating that one or more devices operating on a second WWAN are in the vicinity of the WLAN access point. In response, the portable communication device invokes an interference mitigation process while the identifier indicates that devices operating on the second WWAN are present.
Abstract:
A multi-processor device includes a first processor implemented with a secured key derivation and storage component and a second processor implemented without a secured key derivation and storage component. In operation, the second processor is configured to execute an initial boot process by loading a limited functionality boot image when the multi-processor device is powered on. During the execution of the initial boot process, the second processor provisions a secure storage container to hold a key material and sends a request to the first processor for a key material. In response, the second processor receives a key material derived at the first processor. The second processor then stores the key material in a volatile memory portion of the secure storage container. The second processor executes a main boot process only after erasing instances of the key material temporarily stored outside of the secure storage container.
Abstract:
A method, mobile device, and PKI are provided for enrolling a mobile device into a PKI domain for certificate management is provided. A first asymmetric key pair and a unique identifier is established in a device. The first asymmetric key pair includes a public key and a private key. The public key and the unique identifier are transferred to the PKI domain. The public key and the unique identifier are imported into the PKI domain. The device generates a second asymmetric kay pair and sends a certificate signing request (CSR) that is protected with the digital signature of the first asymmetric key pair. The CSR is transferred to the PKI domain. The PKI domain authenticates the CSR using the first public key and the unique identifier. Upon validation, the PKI domain issues a certificate to the device.
Abstract:
A first group auditory data stream, from a transmitting subscriber device of a first group of subscriber devices or from a dispatch console and intended for the first group of subscriber devices, is received at a conference server. The conference server determines whether the first group auditory data stream generated for the first group of subscriber devices is of interest to a second group of subscriber devices, and if so, sums the first group auditory data stream with a second group auditory data stream intended for the second group of subscriber devices to form a summed group auditory data stream. The conference server then forwards the summed group auditory data stream towards the second group of subscriber devices and forwards the first group auditory data stream towards the first group of subscriber devices.
Abstract:
A method is provided that allows for prioritizing Push-To-Talk (PTT) service in a roamed network. PTT service is enabled for a mobile device at a first network. The mobile device roams to a second network that is of an older generation than the first network. It is determined that the mobile device has an active PTT subscription. PTT service is prioritized for the mobile device over circuit switched services on the second network.
Abstract:
Geo-fence based alerts are provided in a wireless communications network. A first subscriber device (SD) in the wireless communications network determines its current location. The first SD detects a geo-fence trigger by determining, as a function of the determined current location and a stored geo-fence database, that it has either (i) crossed a geo-fence boundary into a first active geo-fence in the stored geo-fence database or (ii) is within the first active geo-fence and has not yet begun playing back an alert associated with the first active geo-fence. Responsively, the first SD identifies an alert associated with the first active geo-fence and begins playback of the alert associated with the first active geo-fence.
Abstract:
A first group auditory data stream, from a transmitting subscriber device of a first group of subscriber devices or from a dispatch console and intended for the first group of subscriber devices, is received at a conference server. A second group auditory data stream from a transmitting subscriber device of a second group of subscriber devices is similarly received. The conference server determines a relative priority level of one of (i) the first group of subscriber devices relative to the second group of subscriber devices and (ii) the first group auditory data stream relative to the second group auditory data stream, and sets different relative signal gains of the first group auditory data stream and the second group auditory data stream as a function of the determined relative priority level. The two auditory data streams are then summed and forwarded towards the second group of subscriber devices.
Abstract:
A method and apparatus for providing acknowledgment information for radio communication devices in a wireless communication system. A base station receives a plurality of units of data each respectively transmitted by one of a plurality of radio communication devices on one of a plurality of predetermined communication slot positions of a first channel. The base station, in response to receiving the data messages, sends a control message on a communication slot position of a second channel. The control message includes acknowledgment information having a plurality of positional acknowledgment indicators. Each radio communication device receives the control message and uses acknowledgment position mapping information to identify one or more positions within the plurality of positional acknowledgment indicators that contains an acknowledgment to the respective units of data it transmitted on the corresponding predetermined communication slot positions of the first channel.