Abstract:
Locomotion-based motion sickness has long been a complaint amongst virtual reality gamers and drone pilots. Traditional head-mounted display experiences require a handheld controller (e.g. thumb stick, touchpad, gamepad, keyboard, etc.) for locomotion. Teleportation compromises immersive presence and smooth navigation leads to sensory imbalances that can cause dizziness and nausea (even when using room-scale sensor systems). Designers have therefore had to choose between comfort and immersion. The invention is a hands-free, body-based navigation technology that puts the participant's body in direct control of movement through virtual space. Participants lean forward to advance in space; lean back to reverse; tip left or right to strafe/sidestep; and rotate to look around. In some embodiments, the more a participant leans, the faster they go. Because the interactions were designed to respond to natural bearing and balancing instincts, movement coordination is intuitive and vection-based cybersickness is reduced.
Abstract:
In some embodiments, extemporaneous control of remote objects can be made more natural using the invention, enabling a participant to pivot, tip and aim a head-mounted display apparatus to control a remote-controlled toy or full-sized vehicle, for example, hands-free. If the vehicle is outfitted with a camera, then the participant may see the remote location from first-person proprioceptive perspective.
Abstract:
In some embodiments, extemporaneous control of remote objects can be made more natural using the invention, enabling a participant to pivot, tip and aim a head-mounted display apparatus to control a remote-controlled toy or full-sized vehicle, for example, hands-free. If the vehicle is outfitted with a camera, then the participant may see the remote location from first-person proprioceptive perspective.
Abstract:
In some embodiments, extemporaneous control of remote objects can be made more natural using the invention, enabling a participant to pivot, tip and aim a handheld display device to control a remote-controlled toy or full-sized vehicle, for example. If the vehicle is outfitted with a camera, then the participant may see the remote location from first-person proprioceptive perspective.
Abstract:
In some embodiments, extemporaneous control of remote objects can be made more natural using the invention, enabling a participant to pivot, tip and aim a head-mounted display apparatus to control a remote-controlled toy or full-sized vehicle, for example, hands-free. If the vehicle is outfitted with a camera, then the participant may see the remote location from first-person proprioceptive perspective.
Abstract:
In some embodiments, extemporaneous control of remote objects can be made more natural using the invention, enabling a participant to pivot, tip and aim a head-mounted display apparatus to control a remote-controlled toy or full-sized vehicle, for example, hands-free. If the vehicle is outfitted with a camera, then the participant may see the remote location from first-person proprioceptive perspective.
Abstract:
In some embodiments, a head-mounted apparatus with a visual display and one or more sensors may make navigation of virtual environments more natural. The invention enables a participant to pivot, tip and aim the apparatus to orient and move through virtual space hands-free.
Abstract:
In some embodiments, extemporaneous control of remote objects can be made more natural using the invention, enabling a participant to pivot, tip and aim a head-mounted display apparatus to control a remote-controlled toy or full-sized vehicle, for example, hands-free. If the vehicle is outfitted with a camera, then the participant may see the remote location from first-person proprioceptive perspective.
Abstract:
Departing from one-way linear cinema played on a single rectangular screen, this multi-channel virtual environment involves a cinematic paradigm that undoes habitual ways of framing things, employing architectural concepts in a polylinear video/sound construction to create a type of experience that allows the world to reveal itself and permits discovery on the part of participants. Techniques are disclosed for peripatetic navigation through virtual space with a handheld computing device, leveraging human spatial memory to form a proprioceptive sense of location, allowing a participant to easily navigate amongst a plurality of simultaneously playing videos and to center in front of individual video panes in said space, making it comfortable for a participant to rest in a fixed posture and orientation while selectively viewing any one of the video streams, and providing spatialized 3D audio cues that invite awareness of other content unfolding simultaneously in the virtual environment.
Abstract:
Departing from one-way linear cinema played on a single rectangular screen, this multi-channel virtual environment involves a cinematic paradigm that undoes habitual ways of framing things, employing architectural concepts in a polylinear video/sound construction to create a type of experience that allows the world to reveal itself and permits discovery on the part of participants. Techniques are disclosed for peripatetic navigation through virtual space with a handheld computing device, leveraging human spatial memory to form a proprioceptive sense of location, allowing a participant to easily navigate amongst a plurality of simultaneously playing videos and to center in front of individual video panes in said space, making it comfortable for a participant to rest in a fixed posture and orientation while selectively viewing any one of the video streams, and providing spatialized 3D audio cues that invite awareness of other content unfolding simultaneously in the virtual environment.