摘要:
A clamping mechanism is provided to clamp a die set on a carrier of a machine. The clamping mechanism utilizes a first pushing block to push a locating shaft of the die set to allow a top surface of the locating shaft to contact a mounting surface of the carrier and utilizes a second pushing block to push the locating shaft to allow a first contacting surface of the locating shaft to contact a reference surface of a cage base such that the die set will not clamp on the carrier of the machine with shift or skew errors.
摘要:
The present invention provides a synchronous servo feeding system for punching machine and the method for operating the same. According to the present invention, a servo feeding device is provided on one side of a punching machine for guiding a material strip into the punching machine for processing. In addition, a servo pulling device is provided on the other side of the punching machine for conveying a finished strip from the punching machine. Besides, a central servo control system is provided for controlling the servo feeding device and the servo pulling device. Thereby, the material strip can be fed and pulled synchronously.
摘要:
A punching system adapted to punch a sheet metal includes a platform, a punching portion, a base portion and a turret device. The punching portion is disposed on the platform, and a first upper die is detachably installed in the punching portion. The base portion is disposed between the punching portion and the platform, and a first lower die is detachably installed in the base portion. The punching portion is adapted to move back and forth along a first direction relative to the platform. The turret device is adapted to move along a second direction relative to the platform, and the first direction is perpendicular to the second direction. A plurality of second upper dies and second lower dies are correspondingly installed on the turret device.
摘要:
A punching system adapted to punch a sheet metal includes a platform, a punching portion, a base portion and a turret device. The punching portion is disposed on the platform, and a first upper die is detachably installed in the punching portion. The base portion is disposed between the punching portion and the platform, and a first lower die is detachably installed in the base portion. The punching portion is adapted to move back and forth along a first direction relative to the platform. The turret device is adapted to move along a second direction relative to the platform, and the first direction is perpendicular to the second direction. A plurality of second upper dies and second lower dies are correspondingly installed on the turret device.
摘要:
The manufacturing apparatus for a stator core has a servo pressing device, a mold, a punch assembly, a first cylinder, a second cylinder and a third cylinder. The mold is mounted on the servo pressing device and has an upper seat and a lower seat. The punch assembly is mounted in the upper seat. The first cylinder, the second cylinder and the third cylinder are mounted on the mold. The stator laminations are respectively punched by the punch assembly of the manufacturing apparatus, and are automatically stacked in the mold. The groups of stator laminations stacked in the recess are respectively pushed by the second cylinder and respectively pressed by the third cylinder. The stator laminations are automatically stacked and pressed in the mold without manpower. Therefore, the manufacturing apparatus of stator core can save manpower and reduce the equipment cost.
摘要:
A method for manufacturing magnet-conductive device includes a filling step and an adhering step. The filling step includes providing a glue by a glue dispenser and contacting the glue with a first magnet-conductive plate to make the glue adhered to a lower surface of the first magnet-conductive plate. The adhering step includes making the lower surface of the first magnet-conductive plate face toward a second magnet-conductive plate, making the first magnet-conductive plate and the second magnet-conductive plate stackable from each other and adhering the first magnet-conductive plate and the second magnet-conductive plate via the glue. Eventually, by repeatedly performing the filling step and the adhering step, the desirable stacking quantity is achieved to form a magnet-conductive device.