Abstract:
Apparatus are provided for infusion devices and related systems and operating methods. An exemplary system includes a motor, a sensing arrangement coupled to the motor to provide output indicative of a detected characteristic of the motor when the sensing arrangement is enabled, and a module coupled to the sensing arrangement to periodically enable the sensing arrangement while the motor is idle and detect potential unintended motion of the motor based on the output from the sensing arrangement while periodically enabling the sensing arrangement. In some embodiments, the motor includes a rotor configured such that its rotation provides translational displacement of a plunger in a fluid reservoir, and the sensing arrangement includes one or more sensors configured to provide output indicative of a detected magnetic field of the rotor magnet.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary infusion device includes a motor operable to deliver fluid to a body of a user, a first control module to enable input power for the motor and provide a dosage command for operating the motor, and a second control module coupled to the first control module to receive the dosage command and operate the motor using at least a portion of the input power based at least in part on the dosage command. One of the first control module and the second control module detects an anomalous condition, and in response, disables the input power to the motor, stores diagnostic information for the anomalous condition in its internal memory, and automatically resets thereafter.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary infusion device includes a motor operable to deliver fluid to a body of a user, a first control module, and a second control module. The first control module and the second control module are coupled to one another. The first control module enables input power for the motor in accordance with a handshaking sequence of communications between the first control module and the second control module and provides a dosage command to the second control module, with the second control module operating the motor using the input power based on the dosage command in accordance with the handshaking sequence of communications.
Abstract:
A fluid infusion device and related operating methods are presented here. An exemplary embodiment of the device includes a drive motor assembly, a force sensor associated with the drive motor assembly, and a reservoir cavity that accommodates fluid reservoirs. An exemplary operating method for the device obtains force measurements for a reservoir seating action of the drive motor assembly, where the force measurements indicate measures of force imparted to the force sensor during the reservoir seating action. The method continues by determining that a vent in the reservoir cavity is blocked, based on an analysis of the force measurements, and by initiating corrective action for the fluid infusion device in response to determining that the vent in the reservoir cavity is blocked.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary infusion device includes a motor operable to deliver fluid to a body of a user, a first control module to enable input power for the motor and provide a dosage command for operating the motor, and a second control module coupled to the first control module to receive the dosage command and operate the motor using at least a portion of the input power based at least in part on the dosage command. One of the first control module and the second control module detects an anomalous condition, and in response, disables the input power to the motor, stores diagnostic information for the anomalous condition in its internal memory, and automatically resets thereafter.
Abstract:
A fluid infusion device and related operating methods are presented here. An exemplary embodiment of the device includes a drive motor assembly, a force sensor associated with the drive motor assembly, and a reservoir cavity that accommodates fluid reservoirs. An exemplary operating method for the device obtains force measurements for a reservoir seating action of the drive motor assembly, where the force measurements indicate measures of force imparted to the force sensor during the reservoir seating action. The method continues by determining that a vent in the reservoir cavity is blocked, based on an analysis of the force measurements, and by initiating corrective action for the fluid infusion device in response to determining that the vent in the reservoir cavity is blocked.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary infusion device includes a motor operable to deliver fluid to a body of a user, a first control module to enable input power for the motor and provide a dosage command for operating the motor, and a second control module coupled to the first control module to receive the dosage command and operate the motor using at least a portion of the input power based at least in part on the dosage command. One of the first control module and the second control module detects an anomalous condition, and in response, disables the input power to the motor, stores diagnostic information for the anomalous condition in its internal memory, and automatically resets thereafter.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary infusion device includes a motor operable to deliver fluid to a body of a user, a first control module, and a second control module. The first control module and the second control module are coupled to one another. The first control module enables input power for the motor in accordance with a handshaking sequence of communications between the first control module and the second control module and provides a dosage command to the second control module, with the second control module operating the motor using the input power based on the dosage command in accordance with the handshaking sequence of communications.
Abstract:
A portable electronic device, such as a fluid infusion device, obtains its operating power from a primary battery and a secondary battery. The primary battery may be a replaceable battery, and the secondary battery may be a rechargeable battery that can be charged with the primary battery under certain conditions. The device utilizes a power management scheme that transitions between the primary battery and/or the secondary battery to prolong the useful life of the primary battery. The device may also generate an intelligent battery life indicator that displays an accurate representation of the remaining life of the primary battery.
Abstract:
Techniques disclosed herein relate to operating a motor using a first control module and a second control module. The techniques may involve detecting, by the first control module, after loading application code for execution by the first control module and the second control module, an anomalous condition. The techniques may further involve in response to detection of the anomalous condition, disabling, by the first control module, input power to the motor. The techniques may further involve resetting the first control module and the second control module to a boot loader stage.