Abstract:
A mobile device includes a housing having a conductive region and a wireless power receiver having a receive coil configured to receive wireless power through the conductive region. The thickness of the conductive region is less than δ/10, wherein δ is a skin depth of the conductive region at a primary frequency of an electromagnetic signal that provides the wireless power.
Abstract:
Methods and apparatus for providing closed loop current control in a wireless power transmitter. The method comprises adjusting a transmitter coil current generated by the wireless power transmitter based, at least in part, on first feedback reported by at least one wireless power receiver and second feedback based on a measurement of the transmitter coil current.
Abstract:
Methods and circuits for controlling a synchronous rectifier. An operating condition of the synchronous rectifier is detected. A voltage level applied to turn on at least one transistor of the synchronous rectifier us modified based upon the detected operating condition, to improve efficiency of the synchronous rectifier.
Abstract:
Apparatus and methods for dual-mode wireless power transfer are described. Two power transmit coils may be configured to provide magnetic resonant and magnetic inductance wireless power transfer from a same charging area of a wireless power transmitter. The coils and magnetic backing may be arranged to provide similar power transfer performance for the two power transfer methodologies.
Abstract:
Apparatus and methods for sensing current carried by one or more planar conductors is described. A plurality of sensing coils may be fabricated adjacent to one or more planar, current-carrying conductors. The sensing coils may detect a magnetic field generated by time-varying current flowing through the one or more planar conductors. The sensing coils may be arranged to cancel uniform and linear-gradient magnetic fields.
Abstract:
A wireless power transmitter includes an inverter in which a voltage varies in response to a resonant network and circuitry configured to (A) measure a characteristic indicative of a load seen by the wireless power transmitter, (B) determine a duty cycle of the inverter based upon the characteristic, and (C) switch the inverter with the determined duty cycle.
Abstract:
A wireless power transfer apparatus includes a support structure having a top surface and a side surface. The support structure is configured to support a mobile device on the top surface and a wearable device at the side surface. The wireless power transfer apparatus also includes a plurality of transmit coils within the support structure. The plurality of transmit coils are configured to wirelessly transmit power to the mobile device on the top surface and the wearable device at the side surface.
Abstract:
A wireless power transmitter includes an inverter in which a voltage varies in response to a resonant network and circuitry configured to (A) measure a characteristic indicative of a load seen by the wireless power transmitter, (B) determine a duty cycle of the inverter based upon the characteristic, and (C) switch the inverter with the determined duty cycle.
Abstract:
Methods and apparatus for providing closed loop current control in a wireless power transmitter. The method comprises adjusting a transmitter coil current generated by the wireless power transmitter based, at least in part, on first feedback reported by at least one wireless power receiver and second feedback based on a measurement of the transmitter coil current.
Abstract:
A mobile device includes a housing having a conductive region and a wireless power receiver having a receive coil configured to receive wireless power through the conductive region. The thickness of the conductive region is less than δ/10, wherein δ is a skin depth of the conductive region at a primary frequency of an electromagnetic signal that provides the wireless power.