Abstract:
Method and user equipment (UE) are provided for early evaluation termination. In particular, a UE can receive a downlink (DL) reference signal (RS) from a network. The UE can measure the DL RS to derive a measurement. Then, the UE can adjust a time value or a count value based on the measurement. The time value is configured by the network for triggering measurement reporting procedure or declaring a radio link failure. The count value is configured by the network for triggering beam failure recovery or random access procedure.
Abstract:
A method of configuring a set of active cells among neighboring cells to reduce latency and interruption for inter-cell mobility is proposed. The set of active cells is an active set of cells among which UE can do fast cell switching. The set of active cells is configured by the network based on UE measurement report or network deployment information. UE maintains the configuration and can perform pre-synchronization to the configured active cells in downlink (DL) only or in both DL and uplink (UL). UE maintains the DL/UL synchronization with the active cells, and applies configuration once UE is indicated to switch to an active cell as the target cell. Because UE maintains the configuration and DL/UL timing of the target cell before receiving the cell-switch command, the mobility latency and interruption time for inter-cell mobility is reduced.
Abstract:
Methods are proposed to derive measurement results for User Equipment (UE) antenna selection, beam selection, cell selection, handover, and radio resource management (RRM). First, UE determines its mobility state by using at least two of the following metrics: 1) Doppler information (e.g., from mobility detection gear, MD); 2) beam ping-pong rate, beam change rate, beam change per time period; and 3) moving speed and moving direction from an accelerometer sensor, rotation speed from a gyroscope, ambient magnetic field from a magnetic field sensor, and at least one active antenna set. Next, UE uses an averaging number that is adapted based on its mobility state to derive an average measurement result including at least one of RSRP, RSRQ, RSSI, IL, SNR, and SINR. Finally, UE performs antenna selection, beam selection, cell selection, or RRM based on the average measurement result and joint consideration.
Abstract:
An adaptive video encoding method includes: encoding, by an encoding circuit, a current frame to generate a current encoded frame; and after the current frame is encoded, obtaining quantization parameter information of at least one encoded frame, wherein the at least one encoded frame includes the current encoded frame, and referring to the quantization parameter information to adaptively adjust a frame rate of at least one next frame to be actually encoded by the encoding circuit.
Abstract:
A device for recording videos includes an image signal processor to process frames captured in response to a request for recording a video at a first frame rate, and a video encoder to encode captured frames. The device also includes processing circuitry operative to allocate image buffers from memory in response to the request, and execute a camera software to direct the image signal processor to fill each image buffer with a batch of the captured frames. For each filled image buffer, a reference of the image buffer is passed from the camera software to a video software at a second rate, which is a fraction of the first frame rate. The processing circuitry then executes the video software to provide one frame at a time to the video encoder for encoding at the first frame rate.
Abstract:
An image processing method is provided. The image processing method includes the following steps: detecting an input sequence of image frames captured using an image capturing device to generate a detection result; referring to the detection result to selectively perform frame interpolation on the input sequence of image frames to generate a to-be-encoded sequence of image frames; and encoding the to-be-encoded sequence of image frames to generate an encoded video signal.
Abstract:
An image processing method is provided. The image processing method includes the following steps: detecting an input sequence of image frames captured using an image capturing device to generate a detection result; referring to the detection result to selectively perform frame interpolation on the input sequence of image frames to generate a to-be-encoded sequence of image frames; and encoding the to-be-encoded sequence of image frames to generate an encoded video signal.