摘要:
A system and method are described for generating electrode stimulation signals for electrode contacts in a cochlear implant electrode array. An input audio signal is processed to generate band pass channel signals that each represent an associated band of audio frequencies. From each channel signal channel, audio information is extracted including a channel signal envelope reflecting channel signal energy. Initial electrode stimulation pulses are then generated based on the band pass signal envelopes. A gating function is applied to the initial electrode stimulation pulses based on a gating feedback signal characterizing preceding stimulation signals to produce gated electrode stimulation pulses. The gated electrode stimulation pulses are set to the initial electrode stimulation signals when the band pass signal envelopes are greater than the gating feedback signal, and otherwise are set to zero.
摘要:
Arrangements are described for generating electrode stimulation signals for stimulation contacts in implanted electrode arrays of a bilateral hearing implant system having electrode arrays on both the left- and right-sides. Left-side and right-side audio input signals are processed to generate corresponding left-side and right-side band pass signals, which each represent an associated band of audio frequencies in the audio input signal. Frequency-specific interaural time delays (ITDs) are estimated for the band pass signals, and the estimated ITDs are used to adjust interaural level differences (ILDs) in the band pass signals. The adjusted band pass signals then are used to generate left-side and right-side electrode stimulation signals for the stimulation contacts in the corresponding left-side and right-side electrode arrays.
摘要:
Arrangements are described for generating electrode stimulation signals for an implanted electrode array having multiple stimulation contacts. An audio input preprocessor receives an input audio signal and generates band pass signals that represent associated bands of audio frequencies. A band pass signal analyzer analyzes each band pass signal to detect when one of the band pass signal components reaches a defined transition event state. A stimulation signal generator generates a set of electrode stimulation signals for the stimulation contacts from the band pass signals such that the electrode stimulation signals to a given stimulation contact: i. use a transition event stimulation pattern whenever a transition event is detected in a band pass signal associated with the given stimulation contact, and ii. use a different non-transition stimulation pattern after the transition event stimulation pattern until a next subsequent transition event is detected.
摘要:
A method is described for generating electrical stimulation signals for stimulation contacts in an auditory implant system. Characteristic feature periods are determined for frequency components in an input audio signal. For selected feature periods that meet a period selection criteria, adjusted feature periods are determined that correspond to a nearest integer multiple of a language-specific fundamental period. A corresponding stimulation rate frequency is determined for each adjusted feature period, and each stimulation rate frequency is assigned to one or more stimulation contacts. The stimulation signals are then generated for the stimulation contacts at their respective stimulation rate frequencies.
摘要:
An external device for a hearing implant system and a hearing implant system having an external device is described. An external transmitter generates a radio-frequency inductive link signal to an implanted receiver including a sequence of data word segments which communicate data to the implanted receiver, and a sequence of data word pause segments between each data word segment which communicate energy without data to the implanted receiver. A data word pause controller controls the inductive link signal during the data word pause segments according to an energy management rule.
摘要:
A bilateral hearing implant system has a left side and a right side. Left and right side filter bank pre-processors preprocess left and right microphone signals to generate band pass signals for each side. A bilateral signal processing arrangement processes the band pass signals in a time sequence of stimulation frames. The signal processing module includes a bilateral channel selection module synchronously selects for each stimulation frame a set of stimulation channels for each side based on spectral content of the band pass signals. Left and right side signal processing submodules process for each stimulation frame a limited subset of each side band pass signals corresponding to the selected stimulation channels to generate electrical stimulation signals.
摘要:
Arrangements are described for generating electrode stimulation signals for stimulation contacts in implanted electrode arrays of a bilateral hearing implant system having electrode arrays on both the left- and right-sides. Left-side and right-side audio input signals are processed to generate corresponding left-side and right-side band pass signals, which each represent an associated band of audio frequencies in the audio input signal. Frequency-specific interaural time delays (ITDs) are estimated for the band pass signals, and the estimated ITDs are used to adjust interaural level differences (ILDs) in the band pass signals. The adjusted band pass signals then are used to generate left-side and right-side electrode stimulation signals for the stimulation contacts in the corresponding left-side and right-side electrode arrays.
摘要:
A system and method for activating stimulation electrodes in cochlear implant electrode is described. A preprocessor filter bank is configured to process an input acoustic audio signal to generate band pass signals that each represent an associated band of audio frequencies. An information extractor is configured to extract stimulation signal information from the band pass signals based on assigning the band pass signals to corresponding electrode stimulation groups that each contain one or more stimulation electrodes, and generates a set of stimulation event signals for each electrode stimulation group that define electrode stimulation timings and amplitudes. A pulse selector is configured to select a set of electrode stimulation signals from the stimulation event signals based on a pulse weighting function that uses channel-specific weighting factors favoring lower frequencies for activating the stimulation electrodes to stimulate neighboring audio nerve tissue.
摘要:
A signal processing arrangement generates electrical stimulation signals to electrode contacts in an implanted cochlear implant array. An input sound signal is processed to generate band pass signals that each represent an associated band of audio frequencies. A characteristic envelope signal is extracted for each band pass signal based on its amplitude. Stimulation timing signals are generated for each band pass signal, including for one or more selected band pass signals using a timing function defined to: i. represent instantaneous frequency as determined by the band pass signal temporal fine structure features, and ii. exclude temporal fine structure features occurring within a time period shorter than a band-specific upper frequency limit. The electrode stimulation signals are produced for each electrode contact based on the envelope signals and the stimulation timing signals.
摘要:
A signal processing system is described for a bilateral hearing implant system having left side and right side hearing implants. An interaural coherence analysis module receives input signals from each hearing implant including sensing microphone signals and band pass signals, and analyzes the input signals to produce an interaural coherence signal output characterizing reverberation-related similarity of the input signals. A pulse timing and coding module for each hearing implant then processes the band pass signals to develop stimulation timing signals, wherein for one or more selected band pass signals, wherein the processing includes using an envelope gating function developed from the interaural coherence signal.