Abstract:
An implantable medical device is provided for controlled drug delivery within the bladder, or other body vesicle. The device may include at least one drug reservoir component comprising a drug; and a vesicle retention frame which comprises an elastic wire having a first end, an opposing second end, and an intermediate region therebetween, wherein the drug reservoir component is attached to the intermediate region of the vesicle retention frame. The retention frame prevents accidental voiding of the device from the bladder, and it preferably has a spring constant selected for the device to effectively stay in the bladder during urination while minimizing the irritation of the bladder.
Abstract:
A sensor is provided for measuring a dissolved oxygen concentration in vivo when implanted at a tissue site and in ex vivo applications. The sensor includes an article comprising a sensing medium retained within the implantable article by an oxygen-permeable material. The sensing medium comprises an MR contrast agent for oxygen. The sensor is configured to indicate the dissolved oxygen concentration of a fluid, e.g., in vivo at the tissue site, when subjected to an MR-based method.
Abstract:
A Unilateral Linear Halbach magnet configuration includes a central magnetized region recessed relative to adjacent magnetized regions disposed on opposite sides of the central magnetized region. The Unilateral Linear Halbach magnet configuration further includes side (or outer) magnetized regions disposed adjacent the center-adjacent magnetized regions. The center and center-adjacent magnetized regions have like-pointing magnetization vectors while the magnetization vectors of the side magnetized regions point in directions orthogonal to the magnetization vectors of the center and center-adjacent regions. Further, the magnetization vectors of the side magnetized regions point in opposite directions.
Abstract:
A medical probe for guided insertion into soft tissue, such as the brain, is disclosed. The medical probe may include a flexible, elongated body having a proximal end portion and an opposed distal end portion. The elongated body has a length of at least 1 cm and an outer diameter of 80 μm or less. The distal end portion may comprise a beveled tip such that the distal end portion of the medical probe can be steered independently to a target site in the soft tissue.
Abstract:
Provided are formulations and methods for treating one or more genitourinary conditions. The formulations may include a therapeutic agent that includes a calcium channel blocker, a rho kinase inhibitor, or a combination thereof. The methods may include locally administering a therapeutic agent into a ureter. Systems for delivering a therapeutic agent also are provided.
Abstract:
Drug delivery devices, medicaments, and methods are provided for the intraperitoneal treatment of ovarian cancer. An implantable device for drug delivery includes an elongated, flexible device having a housing defining a reservoir that contains a drug in solid or semi-solid form, and configured to be wholly deployed within the peritoneal cavity of a patient and continuously release a therapeutically effective amount of the drug over a period of at least 24 hours. A medicament includes cisplatin for administration into the peritoneal cavity of a patient continuously over a treatment period of at least 24 hours. A method of drug delivery includes implanting within the peritoneal cavity of a patient an elongated, flexible device having a reservoir containing a drug, solubilizing the drug at least in part with peritoneal fluid, and releasing an effective amount of the solubilized drug from the reservoir continuously for a period of at least 24 hours.
Abstract:
Drug delivery devices, medicaments, and methods are provided for the intraperitoneal treatment of ovarian cancer. An implantable device for drug delivery includes an elongated, flexible device having a housing defining a reservoir that contains a drug in solid or semi-solid form, and configured to be wholly deployed within the peritoneal cavity of a patient and continuously release a therapeutically effective amount of the drug over a period of at least 24 hours. A medicament includes cisplatin for administration into the peritoneal cavity of a patient continuously over a treatment period of at least 24 hours. A method of drug delivery includes implanting within the peritoneal cavity of a patient an elongated, flexible device having a reservoir containing a drug, solubilizing the drug at least in part with peritoneal fluid, and releasing an effective amount of the solubilized drug from the reservoir continuously for a period of at least 24 hours.
Abstract:
An implantable medical device is provided for controlled drug delivery within the bladder, or other body vesicle. The device may include at least one drug reservoir component comprising a drug; and a vesicle retention frame which comprises an elastic wire having a first end, an opposing second end, and an intermediate region therebetween, wherein the drug reservoir component is attached to the intermediate region of the vesicle retention frame. The retention frame prevents accidental voiding of the device from the bladder, and it preferably has a spring constant selected for the device to effectively stay in the bladder during urination while minimizing the irritation of the bladder.
Abstract:
Provided are formulations and methods for treating one or more genitourinary conditions. The formulations may include a therapeutic agent that includes a calcium channel blocker, a rho kinase inhibitor, or a combination thereof. The methods may include locally administering a therapeutic agent into a ureter. Systems for delivering a therapeutic agent also are provided.
Abstract:
Methods for assessing steatosis and fibrosis in a patient's liver include (i) measuring a diffusion-weighted relaxometry signal of the liver, or portion thereof; and determining a fibrosis content of the liver or portion thereof based on the measured diffusion-weighted relaxometry signal, or (ii) measuring a relaxometry signal of the liver, or portion thereof; and determining a fat content of the liver or portion thereof based on the measured relaxometry signal. A system for such non-invasive sensing includes a static magnetic field source; RF transmitter coils connected to a pulse sequence generator; RF receiver coils configured to detect a magnetic field generated within liver tissues; and a signal acquisition and processor system configured to acquire signals from the RF receiver coils and perform a relaxation time (T2) relaxometry measurement, wherein the RF transmitter coils and pulse sequence generator are configured to apply a varying magnetic field to the liver tissues.