Abstract:
A seat air bladder assembly is provided with at least one central air bladder region having a support surface. At least one pair of lateral air bladder regions extend from opposed sides of the at least one central bladder region. The at least one pair of lateral air bladder regions are oriented at a non-zero angle to incline laterally and support a thoracic region of a seat occupant. A seat assembly is provided with a seat back with a contact surface with a thoracic region. An air bladder assembly is oriented within the thoracic region of the seat back with a support surface that is reclined relative to the contact surface to provide support, and wedge-shaped so that during inflation the air bladder assembly inflates in an upward and forward direction relative to the seat back.
Abstract:
A seatback assembly is provided having a thoracic support structure. The thoracic support structure includes a center portion extending in an upright direction and is adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine. The center portion is formed of a first foam material having a first hardness. A pair of side portions are disposed adjacent to and connected with the center portion. The side portions are formed of a second foam material having a second hardness. The first hardness is greater than the second hardness for providing support to the user's spine. An adjustment mechanism is connected to the thoracic support structure for positioning the support structure along the seatback so that the center portion provides support to at least a portion of the thoracic region of the user's spine.
Abstract:
A vehicle seat is provided, in at least one embodiment, comprising a seatback comprising a cushion having a first hardness, and a pneumatic thoracic support structure positioned adjacent the cushion. In at least one embodiment, the pneumatic thoracic support structure comprises a first bladder selectively inflatable to provide a first area having a second hardness higher than the first hardness, with the first area being disposed along a thoracic region of a user's spine when a user is seated in the seat to provide support to at least a portion of the thoracic region of the user's spine.
Abstract:
A thoracic support for a seatback of a seat is provided. The thoracic support includes a center portion extending in an upright direction and adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine. The center portion is formed of a first foam material having a first hardness. A pair of side portions each disposed adjacent to and are connected with the center portion. The side portions are formed of a second foam material having a second hardness. The first hardness is greater than the second hardness so that the center portion provides support to at least a portion of the thoracic region of the user's spine.
Abstract:
A thoracic support assembly for a seat back of a seat assembly. The thoracic support assembly may include a cover and a thoracic support pad. The thoracic support pad may be movable with respect to the cover and may be configured to support at least a portion of a thoracic region of a user's spine.
Abstract:
A vehicle seat is provided, in at least one embodiment, comprising a seatback comprising a cushion having a first hardness, and a pneumatic thoracic support structure positioned adjacent the cushion. In at least one embodiment, the pneumatic thoracic support structure comprises a first bladder selectively inflatable to provide a first area having a second hardness higher than the first hardness, with the first area being disposed along a thoracic region of a user's spine when a user is seated in the seat to provide support to at least a portion of the thoracic region of the user's spine.
Abstract:
A thoracic support for a seatback of a seat is provided. The thoracic support has a center portion extending in an upright direction and adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine and having a first hardness. A pair of side portions are each disposed on opposing lateral sides of the center portion. The side portions have a second hardness less than the first hardness of the center portion. The pair of side portions and the center portion to define a smooth forward support surface.
Abstract:
A thoracic support assembly for a seat back of a seat assembly. The thoracic support assembly may include a cover and a thoracic support pad. The thoracic support pad may be movable with respect to the cover and may be configured to support at least a portion of a thoracic region of a user's spine.
Abstract:
A seatback assembly is provided having a thoracic support structure. The thoracic support structure includes a center portion extending in an upright direction and is adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine. The center portion is formed of a first foam material having a first hardness. A pair of side portions are disposed adjacent to and connected with the center portion. The side portions are formed of a second foam material having a second hardness. The first hardness is greater than the second hardness for providing support to the user's spine. An adjustment mechanism is connected to the thoracic support structure for positioning the support structure along the seatback so that the center portion provides support to at least a portion of the thoracic region of the user's spine.
Abstract:
A seat assembly is provided with a seat cushion and a pivotal seat back. Sensors are connected to the seat cushion and/or the seat back to detect a seating position. An actuator is connected to the seat cushion and/or the seat back for adjustment. A controller is configured to receive data from the plurality sensors, compare the data to determine if the occupant is seated evenly, and adjust the actuator to balance the occupant posture seating position. The controller is in electrical communication with an inflation device to inflate a first air bladder assembly in a thoracic region of the seat back. A second air bladder assembly oriented in a lumbar region, a sacrum region, and/or a scapular region of the seat back is inflated after initiating inflation of the first air bladder assembly for sequential posture alignment.