摘要:
The present invention relates to a resilient material lined stator and method of forming. A method of forming a resilient material lined stator can include disposing a resilient material tube 400 with a profiled helical inner surface 401 into the bore of a body 420. A cast material 410 can be disposed therebetween. The cast material 410 can bond to the body 420 to form a resilient material lined stator or the body 420 can be removed. The cast material 310 can include a conduit 312 or conductor 314 extending therethrough. The cast material 310 can include a pathway 316 formed therethrough. The resilient material can be an elastomer.
摘要:
The present invention relates to a resilient material lined stator and method of forming. A method of forming a resilient material lined stator can include disposing a resilient material tube 400 with a profiled helical inner surface 401 into the bore of a body 420. A cast material 410 can be disposed therebetween. The cast material 410 can bond to the body 420 to form a resilient material lined stator or the body 420 can be removed. The cast material 310 can include a conduit 312 or conductor 314 extending therethrough. The cast material 310 can include a pathway 316 formed therethrough. The resilient material can be an elastomer.
摘要:
A skinned rotor 201 or skinned stator 305 of a progressive cavity apparatus is described. A rotor 201 can be skinned by threading a sleeve 210 with a profiled helical outer 212 and profiled helical inner 214 surface onto a core 202 with a profiled helical outer surface 204. A rotor (1301, 1401) can also be skinned by inserting a non-helical core (1302, 1402) into a non-helical longitudinal bore (1314, 1414) of a sleeve (1310, 1410) with a profiled helical outer surface (1312, 1412). A stator 305 can be skinned by threading a tubular liner 310 with profiled helical inner 314 and profiled helical outer 312 surfaces into a profiled helical bore 308 of a tube 306. A stator (2405, 2505) can also be skinned by inserting a tubular liner (2410, 2510) with a non-helical outer surface (2412, 2512) into a non-helical bore (2408, 2508) of a tube (2406, 2506).
摘要:
A skinned rotor 201 or skinned stator 305 of a progressive cavity apparatus is described. A rotor 201 can be skinned by threading a sleeve 210 with a profiled helical outer 212 and profiled helical inner 214 surface onto a core 202 with a profiled helical outer surface 204. A rotor (1301, 1401) can also be skinned by inserting a non-helical core (1302, 1402) into a non-helical longitudinal bore (1314, 1414) of a sleeve (1310, 1410) with a profiled helical outer surface (1312, 1412). A stator 305 can be skinned by threading a tubular liner 310 with profiled helical inner 314 and profiled helical outer 312 surfaces into a profiled helical bore 308 of a tube 306. A stator (2405, 2505) can also be skinned by inserting a tubular liner (2410, 2510) with a non-helical outer surface (2412, 2512) into a non-helical bore (2408, 2508) of a tube (2406, 2506).
摘要:
The present invention relates to a resilient material lined stator and method of forming. A method of forming a resilient material lined stator can include disposing a resilient material tube 400 with a profiled helical inner surface 401 into the bore of a body 420. A cast material 410 can be disposed therebetween. The cast material 410 can bond to the body 420 to form a resilient material lined stator or the body 420 can be removed. The cast material 310 can include a conduit 312 or conductor 314 extending therethrough. The cast material 310 can include a pathway 316 formed therethrough. The resilient material can be an elastomer.
摘要:
The present invention relates to a resilient material lined stator and method of forming. A method of forming a resilient material lined stator can include disposing a resilient material tube 400 with a profiled helical inner surface 401 into the bore of a body 420. A cast material 410 can be disposed therebetween. The cast material 410 can bond to the body 420 to form a resilient material lined stator or the body 420 can be removed. The cast material 310 can include a conduit 312 or conductor 314 extending therethrough. The cast material 310 can include a pathway 316 formed therethrough. The resilient material can be an elastomer.
摘要:
The present invention relates to a method of forming and an apparatus for forming a profiled helical tube (100, 200) by rotating a profile die (102, 202) during the extrusion process to impart a helical form to a profiled tube. A method of forming and an apparatus for forming a profiled helical tube (100, 200) can include a rotating or non-rotating profile die (202) with a helical extrusion gap (204). An extruded helical or non-helical tube 300 can be rotated by rotating the tube itself, for example, by rotating a haul-off mechanism (340, 340′).
摘要:
A system and method are herein disclosed for managing memory defects in an information handling system. More particularly, a system and method are described for generating a usable memory map which excludes memory locations containing defect memory elements. In an information handling system, a memory defect map, which contains information about the location of defective memory elements, is coupled to the memory device. As a map of memory usable by the system is created, usable memory regions containing defective memory elements are excluded from the memory map. The memory map is passed to the operating system, which uses only those regions of memory designated as usable and non-defective.
摘要:
Cast material rotor (200,300,500,800) with profiled helical outer surface (208,308,508,808). Cast material layer (502,802) can be disposed between core (504,804) and tube (506,806). Profiled helical outer surface (208,308) can be in tube 206 or cast material layer 302, respectively. Method of forming rotor 200 can include filling void between outer surface 212 of core 204 and longitudinal bore 210 of tube 206 having profiled helical outer surface 208 with cast material 202 in fluid state, and solidifying cast material 202. Tube 206 can be disposed within profiled helical bore 714 of mold 700, e.g., before solidifying cast material 202. Method of forming rotor 300 can include filling void between outer surface 312 of core 304 and profiled helical bore 714 in mold 700 with cast material 302 in fluid state, solidifying cast material 302 to impart profiled helical outer surface 308 thereto, and removing mold 700 from cast material 302.
摘要:
The present invention relates to an inhaled formulation comprising a compound selected from a particular class of 5,6-dihydro-9H-pyrazolo[3,4-c]-1,2,4-triazolo[4,3-a]pyridines which is capable of delivering the compound as fine, solid particles to the lung and the use of such a formulation in the treatment of certain diseases such as respiratory diseases. By the use of such formulations, it is possible to eliminate the unwanted cough response associated with the use of these compounds in solution metered dose inhalers, which response can prevent the administration of a therapeutically effective dose and, in the long term, undermine patient compliance.