Abstract:
A load control system for controlling the amount of power delivered from an AC power source to a plurality of electrical load includes a plurality of independent units responsive to a broadcast controller. Each independent unit includes at least one commander and at least one energy controller for controlling at least one of the electrical loads in response to a control signal received from the commander. The independent units are configured and operate independent of each other. The broadcast controller transmits wireless signals to the energy controllers of the independent units. The energy controllers do not respond to control signals received from the commanders of other independent units, but the energy controllers of both independent units respond to the wireless signals transmitted by broadcast controller. The energy controller may operate in different operating modes in response to the wireless signals transmitted by the broadcast controller.
Abstract:
A load control system provides for automatically controlling a position of a motorized window treatment to control the amount of sunlight entering a space of a building through a window located in a façade of the building in order to control a sunlight penetration distance within the space and minimize occupant distractions. The load control system automatically generates a timeclock schedule having a number of timeclock events for controlling the position of the motorized window treatment during the present day. A user is able to select a desired maximum sunlight penetration distance for the space and a minimum time period that may occur between any two consecutive timeclock events. In addition, a maximum number of movements that may occur during the timeclock schedule may also be entered. The load control system uses these inputs to determine event times and corresponding positions of the motorized window treatment for each timeclock event of the timeclock schedule.
Abstract:
A remote control device may be configured to be mounted over the toggle actuator of a light switch and to control a load control device via wireless communication. The remote control device may include a base portion and a rotating portion supported by the base portion so as to be rotatable about the base portion. The remote control device may include a control circuit and a wireless communication circuit. The control circuit may be operably coupled to the rotating portion and to the wireless communication circuit. The control circuit may be configured to translate a force applied to the rotating portion of the remote control device into a control signal and to cause the communication circuit to transmit the control signal to the load control device.
Abstract:
A load control system for controlling the amount of power delivered from an AC power source to a plurality of electrical load includes a plurality of energy controllers. Each energy controller is operable to control at least one of the electrical loads. The load control system also includes a first broadcast controller that has a first antenna and a second antenna. The first antenna is arranged in a first position and the second antenna is arranged in a second position that is orthogonal to the first position. The broadcast controller is operable to transmit a first wireless signal via the first antenna and a second wireless signal via the second antenna. Each of the energy controllers is operable to receive at least one of the first and second wireless signals, and to control the respective load in response to the received wireless signal.
Abstract:
A remote control device may be configured to be mounted over the toggle actuator of a light switch and to control a load control device via wireless communication. The remote control device may include a base portion and a rotating portion supported by the base portion so as to be rotatable about the base portion. The remote control device may include a control circuit and a wireless communication circuit. The control circuit may be operably coupled to the rotating portion and to the wireless communication circuit. The control circuit may be configured to translate a force applied to the rotating portion of the remote control device into a control signal and to cause the communication circuit to transmit the control signal to the load control device.
Abstract:
A load control system for controlling the amount of power delivered from an AC power source to a plurality of electrical load includes a plurality of energy controllers. Each energy controller is operable to control at least one of the electrical loads. The load control system also includes a first broadcast controller that has a first antenna and a second antenna. The first antenna is arranged in a first position and the second antenna is arranged in a second position that is orthogonal to the first position. The broadcast controller is operable to transmit a first wireless signal via the first antenna and a second wireless signal via the second antenna. Each of the energy controllers is operable to receive at least one of the first and second wireless signals, and to control the respective load in response to the received wireless signal.
Abstract:
A remote control device may be configured to be mounted over the toggle actuator of a light switch and to control a load control device via wireless communication. The remote control device may include a base portion and a rotating portion supported by the base portion so as to be rotatable about the base portion. The remote control device may include a control circuit and a wireless communication circuit. The control circuit may be operably coupled to the rotating portion and to the wireless communication circuit. The control circuit may be configured to translate a force applied to the rotating portion of the remote control device into a control signal and to cause the communication circuit to transmit the control signal to the load control device.
Abstract:
A remote control device may be configured to be mounted over the toggle actuator of a light switch and to control a load control device via wireless communication. The remote control device may include a base portion and a rotating portion supported by the base portion so as to be rotatable about the base portion. The remote control device may include a control circuit and a wireless communication circuit. The control circuit may be operably coupled to the rotating portion and to the wireless communication circuit. The control circuit may be configured to translate a force applied to the rotating portion of the remote control device into a control signal and to cause the communication circuit to transmit the control signal to the load control device.
Abstract:
A load control system for controlling the amount of power delivered from an AC power source to a plurality of electrical load includes a plurality of energy controllers. Each energy controller is operable to control at least one of the electrical loads. The load control system also includes a first broadcast controller that has a first antenna and a second antenna. The first antenna is arranged in a first position and the second antenna is arranged in a second position that is orthogonal to the first position. The broadcast controller is operable to transmit a first wireless signal via the first antenna and a second wireless signal via the second antenna. Each of the energy controllers is operable to receive at least one of the first and second wireless signals, and to control the respective load in response to the received wireless signal.
Abstract:
A load control system for controlling the amount of power delivered from an AC power source to a plurality of electrical load includes a plurality of independent units responsive to a broadcast controller. Each independent unit includes at least one commander and at least one energy controller for controlling at least one of the electrical loads in response to a control signal received from the commander. The independent units are configured and operate independent of each other. The broadcast controller transmits wireless signals to the energy controllers of the independent units. The energy controllers do not respond to control signals received from the commanders of other independent units, but the energy controllers of both independent units respond to the wireless signals transmitted by broadcast controller. The energy controller may operate in different operating modes in response to the wireless signals transmitted by the broadcast controller.