Abstract:
In part, the disclosure relates to method for identifying regions of interest in a blood vessel. The method includes the steps of: providing OCT image data of the blood vessel; applying a plurality of different edge detection filters to the OCT image data to generate a filter response for each edge detection filter; identifying in each edge detection filter response any response maxima; combining the response maxima for each edge detection filter response while maintaining the spatial relationship of the response maxima, to thereby create edge filtered OCT data; and analyzing the edge filtered OCT data to identify a region of interest, the region of interest defined as a local cluster of response maxima. In one embodiment, one or more indicia are positioned in one or more panels to emphasize a reference vessel profile as part of a user interface.
Abstract:
In one embodiment, the invention relates to an apparatus for increasing the repetition rate in a light source. The apparatus includes a first optical coupler comprising a first arm, a second arm and a third arm; a first mirror in optical communication with the second arm of the first optical coupler; and a first optical delay line having a first end in optical communication with the third arm of the first optical coupler and a second end in optical communication with a second mirror, wherein light entering the first arm of the first optical coupler leaves the first arm of the first optical coupler either delayed by an amount (τ) or substantially undelayed.
Abstract:
In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and side branch obstruction. An estimate of side branch diameter can be made based on a vessel profile or a maximum diameter of a vessel at a distal and proximal location relative to the side branch. A amount of side branch obstruction may be determined by comparing an observed side branch diameter with in the image data with the estimated side branch diameter. In addition, an amount of blood flow obstruction may also be determined.
Abstract:
In part, the invention relates to an image data collection system. The system can include an interferometer having a reference arm that includes a first optical fiber of length of L1 and a sample arm that includes a second optical fiber of length of L2 and a first rotary coupler configured to interface with an optical tomography imaging probe, wherein the rotary coupler is in optical communication with the sample arm. In one embodiment, L2 is greater than about 5 meters. The first optical fiber and the second optical fiber can both be disposed in a common protective sheath. In one embodiment, the system further includes an optical element configured to adjust the optical path length of the reference arm, wherein the optical element is in optical communication with the reference arm and wherein the optical element is transmissive or reflective.
Abstract:
In one embodiment, the invention relates to an apparatus for increasing the repetition rate in a light source. The apparatus includes a first optical coupler comprising a first arm, a second arm and a third arm; a first mirror in optical communication with the second arm of the first optical coupler; and a first optical delay line having a first end in optical communication with the third arm of the first optical coupler and a second end in optical communication with a second mirror, wherein light entering the first arm of the first optical coupler leaves the first arm of the first optical coupler either delayed by an amount (τ) or substantially undelayed.
Abstract:
In part, the disclosure relates to method for identifying regions of interest in a blood vessel. The method includes the steps of: providing OCT image data of the blood vessel; applying a plurality of different edge detection filters to the OCT image data to generate a filter response for each edge detection filter; identifying in each edge detection filter response any response maxima; combining the response maxima for each edge detection filter response while maintaining the spatial relationship of the response maxima, to thereby create edge filtered OCT data; and analyzing the edge filtered OCT data to identify a region of interest, the region of interest defined as a local cluster of response maxima. In one embodiment, one or more indicia are positioned in one or more panels to emphasize a reference vessel profile as part of a user interface.
Abstract:
In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
Abstract:
In part, the disclosure relates to method for identifying regions of interest in a blood vessel. The method includes the steps of: providing OCT image data of the blood vessel; applying a plurality of different edge detection filters to the OCT image data to generate a filter response for each edge detection filter; identifying in each edge detection filter response any response maxima; combining the response maxima for each edge detection filter response while maintaining the spatial relationship of the response maxima, to thereby create edge filtered OCT data; and analyzing the edge filtered OCT data to identify a region of interest, the region of interest defined as a local cluster of response maxima. In one embodiment, one or more indicia are positioned in one or more panels to emphasize a reference vessel profile as part of a user interface.
Abstract:
In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and side branch obstruction. An estimate of side branch diameter can be made based on a vessel profile or a maximum diameter of a vessel at a distal and proximal location relative to the side branch. A amount of side branch obstruction may be determined by comparing an observed side branch diameter with in the image data with the estimated side branch diameter. In addition, an amount of blood flow obstruction may also be determined.
Abstract:
In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and side branch obstruction. An estimate of side branch diameter can be made based on a vessel profile or a maximum diameter of a vessel at a distal and proximal location relative to the side branch. A amount of side branch obstruction may be determined by comparing an observed side branch diameter with in the image data with the estimated side branch diameter. In addition, an amount of blood flow obstruction may also be determined.