Abstract:
A reciprocating compressor is provided that may include a shell including a vibration absorbing member formed to be wound around an outer circumferential surface or an inner circumferential surface or stacked thereon, so that compressor vibration may be attenuated by frictional contact between the shell and the vibration absorbing member or between layers of the vibration absorbing member. Also a noise insulating layer may be formed between the shell and the vibration absorbing member or between the layers of the vibration absorbing member, so that a magnitude of noise may be reduced as vibration noise passes through the noise insulating layer, whereby vibration noise of the compressor, such as noise of a high frequency band, may be further attenuated by fine vibration.
Abstract:
A noise reduction device for cleaners includes: a first flow path having a first end communicating with an air outlet and a second end that is open, the first flow path extending in a first direction; and a second flow path having a first end connected between the first end and the second end of the first flow path and a second end that is closed, the second flow path extending in a second direction intersecting the first direction, wherein the first flow path is disposed to surround the second flow path.
Abstract:
A reciprocating compressor is provided for which natural frequencies of a front side support spring and a rear side support spring are formed to be different such that a natural frequency of one support spring is lower than an operating frequency and a natural frequency of the other support spring is higher than the operating frequency, whereby both support springs may resonate in mutually opposite directions to form an antiphase, and thus, compressor vibrations may be effectively reduced without reducing a stiffness of both support springs.
Abstract:
A refrigerator and a noise-reducing device mounted thereto are disclosed. The disclosed noise-reducing device, which comprises a hollow resonance chamber and a tubular acoustic filter inserted into the resonance chamber, is mounted at the side surface of a machine compartment, whereby not only heat due to the operation of a compressor is charged out of the machine compartment, but also noise transmitted from the compressor to the outside of the machine compartment is reduced through diffraction and resonance effects.
Abstract:
An linear compressor and a linear motor for a linear compressor is provided. The linear compressor may include a shell, in which a suction inlet may be provided, a cylinder disposed in the shell to define a compression space for a refrigerant, a frame coupled to an outer side of the cylinder, a piston reciprocated in an axial direction within the cylinder, a stator cover coupled to the frame, and a linear motor supported by the frame and the stator cover to provide power to the piston. The stator cover may include a body, and at least one frame coupling portion coupled to the frame. The at least one frame coupling portion may extend from the body toward the frame.
Abstract:
A compressor includes: a case, a compression unit that is provided inside the case and that includes a cylinder and a piston configured to reciprocate inside the cylinder to compress refrigerant, a driving unit that includes a stator disposed inside the case and a plurality of permanent magnets configured to reciprocate with respect to the stator and that is configured to provide a driving force to the compression unit, and a resonator that is configured to reduce noises generated while the compression unit is operated, that is disposed between the compression unit and an inner surface of the case facing the compression unit in an axial direction, and that is spaced apart from the compression unit.
Abstract:
There is disclosed an outdoor unit an outdoor unit that may attach a cover to a case by using a magnetic member and have an empty space formed between the case and the cover as large as the thickness of the magnetic member, wherein air or a sound-proof or meta material may be filled in the empty space and a cover for covering the case of the outdoor unit may include several pieces that are detachably connected with each other like Lego pieces, and the cover may be attached to the other area of an outer surface of the outdoor unit except the area having an inlet for sucking external air and an outlet hole for discharging the external air drawn into the outdoor unit via the inlet outside again.
Abstract:
The linear compressor is provided that may include a shell having first and second ends open, a first shell cover that covers a first end of the shell, a second shell that covers a second end of the shell, a compressor body accommodated in the shell to compress a refrigerant, a first support that supports a first end of the compressor body within the shell, and coupled to the first shell cover in a state of being spaced apart from the shell, and a second support that supports a second end of the compressor body and fixed to the shell.
Abstract:
A linear compressor includes a cylinder that defines a compression space for a refrigerant, a frame that fixes the cylinder to a shell, a piston that axially reciprocates in an interior of the cylinder, a discharge valve that is provided in front of the cylinder to selectively discharge the refrigerator compressed in the compression space for the refrigerant, a discharge cover that is coupled to the frame and has a discharge space for the refrigerant discharged through the discharge valve, a valve spring that provides an axial resilient force to the discharge valve while supporting the discharge valve, and a valve support device that is coupled to the valve spring and supported by the frame to deliver vibration generated by the discharge valve to the frame.
Abstract:
A linear compressor and a refrigerator including a linear compressor are provided. The linear compressor may include a compressor casing connected to each of a suction inlet, through which a refrigerant may be introduced, and a discharge outlet, through which the refrigerant may be discharged, a compressor body mounted within the compressor casing, within which the refrigerant suctioned in through the suction inlet may be compressed due to a linear reciprocating motion of a piston in an axial direction of the compressor casing and discharged into the discharge outlet, and at least one plate spring disposed on each end of the compressor body in the axial direction.