Abstract:
There are disclosed embodiments for forming an enhanced elastic image in an ultrasound system. An elastic image of a target object may be formed by scanning N scan lines. A control unit divides the N scan lines into M scan lines groups by using an acquisition period necessary for transmitting and receiving ultrasound signals to acquire ultrasound data. An ultrasound data acquiring unit transmits ultrasound signals to a target object and receives the ultrasound signals reflected from the target object at a predetermined transmission/reception sequence for each of the M scan line groups. This forms ultrasound data corresponding to each of the M scan line groups while a pressure is applied to the target object. An elastic image forming unit forms at least one sub elastic image corresponding to each of the M scan line groups based on the ultrasound data. The elastic forming unit sums M sub elastic images corresponding to the respective M scan line groups to thereby form an elastic image of the target object.
Abstract:
There are disclosed embodiments for forming an enhanced elastic image in an ultrasound system. An elastic image of a target object may be formed by scanning N scan lines. A control unit divides the N scan lines into M scan lines groups by using an acquisition period necessary for transmitting and receiving ultrasound signals to acquire ultrasound data. An ultrasound data acquiring unit transmits ultrasound signals to a target object and receives the ultrasound signals reflected from the target object at a predetermined transmission/reception sequence for each of the M scan line groups. This forms ultrasound data corresponding to each of the M scan line groups while a pressure is applied to the target object. An elastic image forming unit forms at least one sub elastic image corresponding to each of the M scan line groups based on the ultrasound data. The elastic forming unit sums M sub elastic images corresponding to the respective M scan line groups to thereby form an elastic image of the target object.
Abstract:
In a method of compounding an ultrasound image, ultrasound signals having a transmission frequency are transmitted to a target object at a predetermined steer angle. Then, signals reflected by the target object are received. Based on the received signals, an image frame is formed. By repeating the above steps with different transmission frequencies, two or more image frames are obtained. The obtained image frames are then combined to provide a compound ultrasound image. The steer angle varies based on the transmission frequency.
Abstract:
There are disclosed embodiments for an ultrasound system for providing a color M mode image and a brightness M mode image. A control unit calculates a time period expected to perform a first operation for the color M mode image and a second operation for the brightness M mode image once respectively, and determines an acquisition pattern defining an order of performing the first and second operations based on the calculated time period, a sweep period, and an ensemble number. The control unit controls the acquisition unit to perform, within the sweep period, the first operation a number of times equal to the ensemble number and the second operation one or more times according to the acquisition pattern. An image processor forms the color M mode image based on the first ultrasound data and forms the brightness M mode image based on the second ultrasound data.
Abstract:
Embodiments for filtering clutter signal from Doppler signal in an ultrasound system are disclosed. In one embodiment, a Doppler signal acquiring unit may transmit and receive ultrasound signals to and from a target object to acquire Doppler signal. A signal processing unit performs filtering upon the Doppler signal by using a first clutter filter having a first cutoff frequency and compute an input signal power to filtered input signal power rate (IFR) for the Doppler signal. The signal processing unit is further configured to be responsive to the IFR to modulate the Doppler signal and perform filtering upon the modulated Doppler signal by using the first clutter filter or to perform filtering the Doppler signal by using a second clutter filter having a second cutoff frequency.
Abstract:
There are disclosed embodiments for an ultrasound system for providing a color M mode image and a brightness M mode image. The ultrasound system comprises: an ultrasound data acquisition unit configured to perform a first operation for providing a first piece of ultrasound data for a color M mode image and a second operation for providing a second piece of ultrasound data for a brightness M mode image; a control unit configured to control the ultrasound data acquisition unit to perform the first operation by an average number of times and the second operation one or more times in a selective pattern within a predetermined sweep period to respectively accumulate the first pieces of ultrasound data and the second pieces of ultrasound data provided from the ultrasound data acquisition unit; and an image processor configured to form the color M mode image based on the accumulated first pieces of ultrasound data and to form the brightness M mode image based on the accumulated second pieces of ultrasound data.
Abstract:
Embodiments for adaptively performing clutter filtering upon in an ultrasound system are disclosed. In one embodiment, the ultrasound system includes: an ultrasound data acquisition unit configured to transmit ultrasound signals to a target object and receive ultrasound echoes reflected from the target object to thereby acquire ultrasound data; and a processing unit configured to form a Doppler signal corresponding to each of a plurality of pixels constructing a Doppler mode image based on the ultrasound data, as well as to adjust coefficients of a clutter filter based on characteristics of the Doppler signal for each of the pixels for performing clutter filtering upon the Doppler signal.
Abstract:
Embodiments for forming elastic images in an ultrasound system are disclosed. In one embodiment, a Tx/Rx unit repeatedly transmits/receives an ultrasound beam along scan lines in a target object to output receive signals. An image processing unit forms a plurality of consecutive ultrasound images based on the receive signals and set a center of the target object on each of the ultrasound images. The image processing unit further sets radial scan lines in radial directions with respect to the center on each of the ultrasound image and reconstructs the ultrasound images such that the radial scan lines are in parallel with each other to form reconstruction images. An elastic image forming unit forms an elastic image based on the reconstruction images.
Abstract:
The present invention is directed to an ultrasound system capable of providing a plurality of M-mode images corresponding to M-mode lines without moving a probe. A volume data forming and reconstructing unit of the present invention forms volume data based on the ultrasound echo signals, the volume data forming and reconstructing unit being configured to determine a beat period of the moving object and reconstruct the volume data based on the beat period. A processor forms at least one reference image based on the reconstructed volume data and one or more M-mode images corresponding to one or more M-mode lines set on the reference image. A display unit displays the reference image, the M-mode lines and the M-mode images.
Abstract:
The present invention relates to an organic-transition metal complex which can safely and reversibly store hydrogen in a high capacity, and a process for preparing the same. In order to achieve the objects, the hydrogen storage material according to the invention comprises a complex generated by combination of an organic substance containing a hydroxyl (—OH) group(s) with a transition metal containing compound, which can more effectively store hydrogen with more than one transition metal being bonded per molecule. Examples of the organic substances containing hydroxyl (—OH) group(s) include alkyl derivatives such as ethylene glycol, trimethylene glycol and glycerol, and hydroxyl-containing aryl derivatives such as fluoroglucinol. As the transition metal, titanium (Ti), vanadium (V) and scandium (Sc), which can make Kubas binding, may be mentioned.