Abstract:
Supplying pellets without the risk of enlarging the apparatus size or moisture absorption of the pellets by disposing a rotation drum provided with a pellet storage room in a sealed case with an inert gas supply. The apparatus according to the present invention has a main body case with a rotation drum storage part formed therein, a lid mounted on the front surface opening part of the main body case, a rotation drum disposed rotatably in the rotation drum storage part, and a pellet supply nozzle elongating from the main body. Through holes having a size capable of inserting a pellet are provided on the circumferential wall of the rotation drum with an equal interval in the circumferential direction as well as the side wall of the main body case to be contacted slidably with the circumferential wall of the rotation drum. A gas supply hole for supplying an inert gas into the pellet storage room via the through holes, and a pellet discharging hole for discharging the pellets in the through holes at the time it coincides with the pellet storing through holes according to rotation of the rotation drum.
Abstract:
A mercury supplying method capable of always supplying a constant amount of mercury into a chamber part easily by executing measurement and ejection of the mercury at the same time. A small diameter pipe as a mercury supply path, is inserted through a glass tube elongating from a chamber part of an arc tube from above so as to have the tip part thereof substantially reaching into the chamber part, and connecting the upstream side of the sealed mercury supply path (mercury barrel) with a gas pressure adjuster. The gas pressure adjuster keeps the inside of the mercury supply path (mercury barrel) at a predetermined pressure so as to maintain the inside of the small diameter pipe in the state filled with mercury as well as applying a predetermined pressure to the mercury in the small diameter pipe for a predetermined time and thus ejecting a predetermined amount of mercury from the small diameter pipe tip part so as to be dropped and supplied to the chamber part. Measurement and ejection of the mercury can be executed at the same time with the small diameter pipe inserted through the glass tube of the arc tube from above. A predetermined amount of mercury can always be supplied into the chamber part in a short time.
Abstract:
An arc tube and method of fabricating the arc tube for a discharge lamp. The arc tube includes an arc tube main body 10 at which a sealed glass bulb 12 serving as a discharge portion sandwiched by pinch seal portions is formed at a portion of a glass tube W along the longitudinal direction thereof, and a cylindrical shroud glass 20 which is welded on and integrated with the arc tube main body 10 so as to cover the sealed glass bulb 12, the front and rear end portions of the shroud glass 20 may be joined, for example, by welding on shroud glass welded portions with circular cross sections provided at the front and rear end sides of the arc tube main body 10, respectively. The inner peripheral surface of the diameter reduced portion of the shroud glass tube 20, which is molten, soften and deformed inside along the radial direction, contacts closely to the circular outer peripheral surface on the arc tube main body 10 side, so that a space can not be formed at the welding portion of the shroud glass 20 (adhesion surface). Thus, the atmosphere does not enter into the sealed space 24 surrounded by the shroud glass 20, and accordingly, devitrification is prevented.
Abstract:
An electrode assembly for an arc tube which is free from the difficulty that tearing of a foil occurs in pinch-sealing the arc tube. One end portion of an electrode bar is overlapped with a molybdenum foil, and the electrode bar is connected to the molybdenum foil by spot-welding the overlapped portions of the two members, except for the tip end part of the end portion of the electrode bar, whereby the molybdenum foil is prevented from being damaged by the rectangular corner of the end portion of the electrode bar.
Abstract:
An optical unit with shake correcting function may include a movable module having a lens, a fixed body supporting the movable module, a shake detection sensor for detecting shake of the movable module, and at least one pair of magnetic drive mechanism for shake correction which is structured on both sides of the movable module so that the movable module is swung with respect to the fixed body on the basis of detection result of the shake detection sensor to correct the shake of the movable module. The magnetic drive mechanism for shake correction is disposed so that a shake correction magnet is held by the fixed body and a shake correction coil is held by the movable module. Further, a shake correction coil may be disposed in a first region, where magnetic lines of force generated by a shake correction magnet are directed in directions generally going away from a supporting point part and/or a second region where magnetic lines of force generated by the shake correction magnet are directed in directions generally going toward the supporting point part.
Abstract:
An optical unit with shake correcting function may include a movable module on which an optical element is mounted, a fixed body which supports the movable module, a shake detection sensor which detects a shake of the movable module, a shake correction magnetic drive mechanism which swings the movable module on the fixed body on a basis of a detection result of the shake detection sensor to correct the shake of the movable module, and a spring member which is connected with the fixed body and the movable module. A stopper mechanism may be structured between the movable module and the fixed body, and the stopper mechanism may moving ranges of the movable module due to the shake.
Abstract:
A method of forming a power transmission belt including the steps of: providing a first layer made from rubber and having first and second oppositely facing sides; providing a mold; pressing the first side of the first layer conformingly against a surface on the mold having alternating projections and recesses to thereby form alternating teeth and troughs on the first layer; locally pressing the second side of the first layer at locations coinciding lengthwise with the teeth to thereby eliminate or prevent the formation of discrete holes; and joining the first layer, having the alternating teeth and troughs thereon, to at least one other component to define the power transmission belt.
Abstract:
A spindle motor has a fixed member of a motor, a rotor rotatably supported with respect to the fixed member, a shaft provided on either the fixed member or the rotor, a first ball bearing fitted on a head side of the shaft and a second ball bearing fitted on a base side of the shaft and having an axial dimension larger than an axial dimension of the first ball bearing. A circumferential wall, preferably on the fixed member, has a small gap with an outer circumferential wall of an outer ring of the second ball bearing.
Abstract:
An optical unit with shake correcting function may include a movable module on which an optical element is mounted, a fixed body which supports the movable module, a shake detection sensor which detects a shake of the movable module, a shake correction magnetic drive mechanism which swings the movable module on the fixed body on a basis of a detection result of the shake detection sensor to correct the shake of the movable module, and a spring member which is connected with the fixed body and the movable module. A stopper mechanism may be structured between the movable module and the fixed body, and the stopper mechanism may moving ranges of the movable module due to the shake.
Abstract:
A method of forming a power transmission belt including the steps of: providing a first layer made from rubber and having first and second oppositely facing sides; providing a mold; pressing the first side of the first layer conformingly against a surface on the mold having alternating projections and recesses to thereby form alternating teeth and troughs on the first layer; locally pressing the second side of the first layer at locations coinciding lengthwise with the teeth to thereby eliminate or prevent the formation of discrete holes; and joining the first layer, having the alternating teeth and troughs thereon, to at least one other component to define the power transmission belt.