Abstract:
Provided is a control method of a complex energy system that supplies heat and power to energy consumers through a heat network and a power network. The control method includes monitoring energy consumption information of the energy consumers and confirming an energy price applied to each of the energy consumers, calculating a total energy consumption cost of the energy consumers according to the energy price and the energy consumption information, and controlling a cogenerator and a heat generator so that a sum of a power supply amount of the cogenerator and a power consumption amount from an external power grid is equal to a total power consumption amount of the energy consumers, a sum of a heat supply amount of the cogenerator and a heat supply amount of the heat generator is equal to a total heat consumption amount of the energy consumers, and a target function value obtained by subtracting the total energy consumption cost from a sum of a power consumption cost from the external power grid and operating costs of the cogenerator and the heat generator is maximized.
Abstract:
The present disclosure relates to a multifunctional energy storage system in which one energy storage system is capable of performing a plurality of functions and an operating method thereof. According to an aspect of the present disclosure, there is provided a multifunctional energy storage system including: a battery; a power converter to transfer power between a system and the battery; a multi-function controller to select the activation functions, to generate an integrated objective function, a weight, and a constraint condition corresponding to the activation functions, and to generate a control value for controlling each function included in the activation functions on the basis of the integrated objective function, the weight, and the constraint condition; and an individual function controller to receive the control value for each of the activation functions from the multi-function controller and to control the power converter so that each function is performed on the basis of the received control value.
Abstract:
One exemplary embodiment provides a charging and discharging control apparatus for an energy storage apparatus, the charging and discharging control apparatus including: a charging and discharging controlling unit configured to control a charging and discharging current amount of the energy storage apparatus according to a droop curve; a communication unit configured to receive state information from the energy storage apparatus; and a droop curve adjusting unit configured to adjust a characteristic value of the droop curve according to the state information.
Abstract:
The present provides an arc detection apparatus that includes: a current sensor configured to sense the first current that flows through the first line of a system in which the influence of noise according to the operation is detected in the first frequency band; a frequency data creator configured to digitally process sensed values of the first current in the first time period and the second time period, respectively, in order to thereby create the first frequency data and the second frequency data for the first frequency band; and an arc determination unit configured to determine the possibility of the generation of an arc of the system according to comparison data between the first frequency data and the second frequency data.
Abstract:
The present disclosure provides a charging system including: at least two charging devices including at least two output units configured to supply connected automobiles with charging power, a first bus electrically connected to the output units and configured to transfer charging power to the output units, and a power processing unit configured to process power, which is supplied from a power source, using a first capacity and supply the first bus with the processed power; and a second bus configured to connect a first bus of a first charging device and a first bus of a second charging device, wherein, when a total capacity of charging power supplied to automobiles connected to the first charging device exceeds the first capacity, a part or all of lacking capacity is supplied via the second bus.
Abstract:
An embodiment of the present disclosure provides an arc detection method, in which an apparatus detects arcs, comprising the steps of: obtaining time series data for measured values of an electric current flowing in a wire; calculating first statistical values indicating dispersion degrees with time of the measured values or dispersion degrees with time of variances of the measured values from the time series data; and determining that an arc occurs in the wire or that the possibility of arc occurrence in the wire is high in a case when at least one of the first statistical values is out of a predefined range.
Abstract:
An embodiment of the present disclosure provides an arc detection method, in which an apparatus detects arcs, comprising the steps of: obtaining time series data for measured values of an electric current flowing in a wire; calculating first statistical values indicating dispersion degrees with time of the measured values or dispersion degrees with time of variances of the measured values from the time series data; and determining that an arc occurs in the wire or that the possibility of arc occurrence in the wire is high in a case when at least one of the first statistical values is out of a predefined range.
Abstract:
Provided is a converter system including: a plurality of converter modules connected to one power source in parallel; and a controller for storing mapping information of first parameters corresponding to processing power of the converter modules and second parameters corresponding to the number of converter modules that optimally process the processing power among the converter modules, configuring a value of the first parameter according to a measurement value of power input into the converter modules or power output from the converter modules, calculating a value of the second parameter by substituting the value of the first parameter into the mapping information, selecting the number of converter modules corresponding to the value of the second parameters as active converter modules from the converter modules and processing the processing power by using the active converter modules, and controlling output power of the active converter module to gradually increase or decrease in a transient state where the value of the second parameter is changed.