Abstract:
The present invention relates to an adaptive frequency hopping apparatus in a wireless personal area network (WPAN) system, wherein predetermined packets of data can be correctly transmitted by estimating the channel qualities of operating bands in advance and transmitting the packets through a proper band. The adaptive frequency hopping apparatus according to the present invention comprises a frequency table for monitoring each channel quality and storing and outputting information on each channel quality accumulated therein, a frequency hopping transceiver for generating and outputting a frequency pattern in accordance with predetermined rules, a link controller for generating an asynchronous connectionless (ACL) link in accordance with output signals of the frequency table and the frequency hopping transceiver and controlling selection of an operating mode between a channel avoidance scheme and a channel selection scheme, a packet handler for generating packet data by integrating a synchronous connection oriented (SCO) link and the ACL link inputted thereinto, a gaussian frequency shift keying (GFSK) modulator for performing GFSK modulation for signals outputted from the packet handler, a mode selector for selecting the operating mode between the channel avoidance scheme and the channel selection scheme in accordance with output signals of the frequency hopping transceiver and the link controller, a frequency synthesizer for synthesizing frequencies in accordance with output signals of the mode selector, a first multiplier for multiplying signals from outputted from the frequency synthesizer and the GFSK modulator and for outputting the multiplied signals as transmission signals, a second multiplier for multiplying the output signals of the frequency synthesizer by received signals, an RSSI detector for detecting a RSSI from output signals of the second multiplier, a GFSK demodulator for performing GFSK demodulation for the output signals of the second multiplier, a packet handler for restoring packet-type data from output signals of the GFSK demodulator, and a channel quality detector for estimating the channel quality by using the output signals of the RSSI detector and the packet handler, and storing it in the frequency table.
Abstract:
Disclosed is a zipper type Very high bit-rate Digital Subscriber Line (VDSL) system which comprises a transmitter including an inverse fast Fourier transformer for performing an inverse fast Fourier transform on input data, and a cyclic extension adder for adding a cyclic extension for each symbol to the data output from the inverse fast Fourier transformer and outputting the data to a transmission channel; and a receiver including a cyclic extension remover for removing the cyclic extension from the data received through the transmission channel, and a fast Fourier transformer for performing a fast Fourier transform on the data output from the cyclic extension remover. The cyclic extension adder copies a first predetermined number of data starting from the leading part of the input symbol data received from the inverse fast Fourier transformer into a first cyclic suffix for removing interference between symbols and maintaining orthogonality between sub-carriers; adds the first cyclic suffix to the end of the symbol data; copies a second predetermined number of data subsequent to the first predetermined number of data into a second cyclic suffix for maintaining orthogonality between upstream and downstream; and adds the second cyclic suffix to the end of the first cyclic suffix. According to the present invention, the cyclic extension system uses the CS alone to greatly reduce hardware size and delay, but it has the same transmission performance as the conventional system under normal channel environments. Furthermore, the present invention system in the asynchronous mode employs pulse shaping and windowing functions so as to enhance the performance as in the synchronous mode.
Abstract:
A constant amplitude coded bi-orthogonal demodulator demodulates the received constant amplitude bi-orthogonal modulated data, cancels the parity bits to generate the serial data, detects the occurrence of an error by dividing the demodulated data into a plurality of groups of data, outputs the serial data as demodulated data if an error does not occur, sequentially converts bit polarities of data of groups in which an error occurs if the error detector detects the error, compares distances between the received bi-orthogonal modulated data and the constant amplitude coded bi-orthogonal modulated data, and selects, as demodulated data, data of which corresponding bit polarities are changed according to the comparison results. According to the present invention, power consumption is reduced, a power amplifier can be manufactured at an inexpensive cost, interference robustness can be ensured, and data can be transmitted at a high transmission rate and a variable transmission rate.
Abstract:
An apparatus for transmitting data in a wireless communication system is disclosed. An apparatus for transmitting data in a wireless communication system according to the present invention includes a serial to parallel converter operable to transform serial data into parallel data; a summer operable to combine the parallel data after multiplying them by orthogonal code; a level clipper operable to remove a portion of the summed signal above and below a desired threshold range; and a quadrature phase shift keying(QPSK) modulator operable to change the phase of the clipped signal and to transfer the modulated signal therefrom. Thus, the present invention can embody high-speed data transfer rate in such a simple structure by combining a VSG method with an MC method to clip multi-level signals from the MC method and to maintain orthogonality of MC required in the VSG method.