Abstract:
A light weight lifting tool (10) for lowering and retrieving subsea equipment to and from the sea bed is disclosed. The equipment includes an upper coupling part in the form of a connector spool piece (15) having at least one circumferential ring groove (16) for use in making engagement with the lifting tool (10). The lifting tool (10) includes a housing (1) designed to enclose and receive the connector spool piece (15). The lifting tool (10) further includes a number of latch segments (8) having at least one radially inwards directed projection (8′) designed for engagement with the at least one ring groove (16), and an activating device (6) arranged to bring the latch segments (8) in and out of engagement with the at least one ring groove (16) by operation of the activating device (6).
Abstract:
A coupling arrangement having external threads carried on a first pipe element. A second pipe element carries a radially movable locking member with external locking profiles, and a connection sleeve having internal threads that are threaded onto external threads and internal locking profiles that engage with the external locking profiles. The connection sleeve is moved in a first axial direction towards the first pipe element by rotation on the external threads while the internal locking profiles are in an intermediate engagement with the external locking profiles, until the movement is limited by abutting faces of the internal and external locking profiles. At least one of the abutting faces exhibits an inclination resulting in a pull of the connection sleeve towards an axial direction opposite of the first axial direction when the external locking profiles are moved radially.
Abstract:
Subsea anchor (1) having a hollow cylindrical body (3) extending down from a top part (13). The anchor has a top aperture (15) and a top hatch (17) which is adapted to close and open the top aperture (15). The cylindrical body (3) is adapted to penetrate into a seabed. The area of said aperture (15) is at least 30% of the corresponding cross section area encircled by the cylindrical body (3).
Abstract:
Coupling arrangement for connection of two pipe elements (11, 13), comprising external threads (17) on a first pipe element (13). A second pipe element (11) carries a radially movable locking member with external locking profiles (33). A connection sleeve (15) with internal threads (19) is threaded onto said external threads (17) and internal locking 11 profiles (35) are engaged with said external locking profiles (33).The connection sleeve (15) is moved in a first axial direction towards said first pipe element (13) by rotation on said external threads (17) while its internal profiles (35) are in an intermediate engagement with said external profiles (33), until said movement is limited by abutting faces (33a, 35a) of said internal and external profiles (33, 35), when possible axial clearances have been closed due to the4 first axial movement. The abutting faces (33a, 35a) exhibit an inclination resulting in a pull of the connection sleeve (15) towards an axial direction opposite of said first direction, when said external locking profiles (33) are moved radially outwards from said intermediate engagement to a position of further engagement of the internal locking profiles (35).
Abstract:
A well head system for application in sub sea well exploration comprising a well head (23) having a well head housing secured to a well casing, at least one valve stack, e.g. a BOP (1) located atop said well head (23). The valve stack is removably locked on a well template (15) supporting said well head by a plurality of locking devices (7). Also described is a locking device comprising two opposite clamping arms (19) hingedly attached to a main frame (21). The Main frame is slidable relative to a spindle (17) and can be selectively secured to the spindle (17).
Abstract:
Subsea well template comprising a plurality of well slots arranged adjacent to a manifold reception space, said template comprising a plurality of template hatches for protection of well components, including a Xmas tree. Said hatches comprise at least a top protection cover and a side protection panel. The hatches are arranged to pivot between a closed and open position, about a pivot axis arranged at a lower end of the hatch. When in an open position, the well template exhibits absence of a framework extending up towards the top of the template.
Abstract:
Subsea well template comprising a plurality of well slots arranged adjacent to a manifold reception space, said template comprising a plurality of template hatches for protection of well components, including a Xmas tree. Said hatches comprise at least a top protection cover and a side protection panel. The hatches are arranged to pivot between a closed and open position, about a pivot axis arranged at a lower end of the hatch. When in an open position, the well template exhibits absence of a framework extending up towards the top of the template.
Abstract:
A well head system for application in sub sea well exploration comprising a well head (23) having a well head housing secured to a well casing, at least one valve stack, e.g. a BOP (1) located atop said well head (23). The valve stack is removably locked on a well template (15) supporting said well head by a plurality of locking devices (7). Also described is a locking device comprising two opposite clamping arms (19) hingedly attached to a main frame (21). The Main frame is slidable relative to a spindle (17) and can be selectively secured to the spindle (17).
Abstract:
A connector means (10; 20) for tie-in and connecting of a first pipeline and a second pipeline on the seabed is shown. The connector means comprises a first connector part (1; 1′) retaining a first end of the first pipeline. The first connector part and the first pipeline are designed to be lowered and deployed on the seabed in advance of the connecting operation. A submersible second connector part (2; 2′) that retains a second end of the second pipeline (4) is also included. The second connector part and the second pipeline are designed to be lowered from the surface of the water toward the first connector part (1; 1′). The connector parts (1, 2; 1′, 2′) comprises means (6, 11; 21, 22) that cooperate during relative motion between said connector parts, and is hinged tilting the second connector part (2, 2′) by means of forced motion, and thus aligning the second pipe end (4e, 4′e) in the direction toward the first pipe end (8e, 8′e) such that the first and second pipelines are brought to be in line with each other on the seabed. In addition a connector (3, 3′) is arranged between the connector parts for final connection between the pipeline ends.
Abstract:
Connector (100) with locking components (107) about a peripheral section of the connector. The locking components extend in an axial direction engage with the connector (100) at a first end and engage with a connecting part (201) at an opposite locking end with a locking profile (109). A radial locking movement of the locking end is provided by an axial movement of an actuation sleeve (113). The locking components (107) are arranged to pivot in a substantially radial direction, about their section of engagement with the connector (100), into and out of a locking position. The connector (100) comprises guiding plates (111) between the locking components (107) in the area of their locking ends. The guiding plates exhibit protective faces (111a) that extend further radially inwards than the locking profile (109) of the locking components (107) when the latter are in the outwardly pivoted position.