Abstract:
A power recharger for use with a robot cleaner has a recharging terminal to which a battery terminal of the robot cleaner is docked and an anchor member on a rear side of the body of the recharging unit. The anchor member fills in the space defined between the wall of the room and the power recharger. The anchor member therefore securely supports the power recharger in the battery recharging process.
Abstract:
Disclosed is a robot cleaner which cleans a floor, and generates negative-ions while traveling around a predetermined area. The robot cleaner includes a cleaner body which travels automatically around a cleaning area, a driving unit for driving a plurality of wheels mounted on a lower part of the cleaner body, a suction unit mounted in the cleaner body to draw in dust on a floor, a negative-ion generation unit mounted in the cleaner body to generate a negative-ion, and a control unit. While the robot cleaner travels automatically, it also performs vacuum cleaning using the suction unit, and air cleaning using the negative-ion generation unit, either at the same time or selectively. Accordingly, the floor is cleaned and air is purified by the negative-ion, which enables a hygienic cleansing and a healthy home environment.
Abstract:
A power recharger for use with a robot cleaner has a recharging terminal to which a battery terminal of the robot cleaner is docked and an anchor member on a rear side of the body of the recharging unit. The anchor member fills in the space defined between the wall of the room and the power recharger. The anchor member therefore securely supports the power recharger in the battery recharging process.
Abstract:
In exemplary embodiments, a robot cleaner with improved safety features comprises a driving part for movably supporting a cleaner body and supplying a driving force for operating the cleaner body; a suction part mounted on the cleaner body to draw in dust from a surface being cleaned; a body sensor mounted on the cleaner body to perceive any approach or contact of at least a part of human body or pet; and a control part for turning on and off the driving part according to a signal detected by the body sensor.
Abstract:
A robot cleaner, a robot cleaning system and a method for controlling the same capable of efficiently performing work on command by recognizing the driving distance and direction of the robot cleaner regardless of a of wheel slippage or irregularity in the floor. The robot cleaner performs a working operation while moving about a floor, and comprises a main body, a driving unit for driving a plurality of wheels disposed on a bottom portion of the main body, a downward-looking camera disposed among the wheels on the bottom portion of the main body for photographing images of the floor perpendicular to the driving direction of the robot cleaner, and a control unit for recognizing driving distance and direction of the wheels using image information of the floor photographed by the downward-looking camera, and for controlling the driving unit corresponding to a target work by using the recognized distance and direction of the wheels. An upward-looking camera can photograph and use information relating to spatial orientation for determining and correcting driving distance and direction.
Abstract:
A robot vacuum cleaner has a driving unit moving a cleaner body on a cleaning surface; a distance detecting unit detecting a distance of travel by the driving unit; an obstacle detecting unit detecting an obstacle near the cleaner body; and a central processing unit moving the cleaner body to a location a certain distance away from the obstacle according to a cleaning travel pattern when the obstacle detecting unit detects an obstacle, and variably applying the distance as the obstacle is detected and outputting a travel signal to the driving unit, thereby evenly covering the cleaning area.
Abstract:
A robot cleaner system for detecting an external recharging apparatus which is positioned in a non-detectable area by an upper camera thereof, and a docking method for docking the robot cleaner system with the external recharging apparatus. The robot cleaner system includes an external recharging apparatus with a power terminal connected to a utility power supply, a recharging apparatus recognition mark formed on the external recharging apparatus, and a robot cleaner, having a recognition mark sensor that detects the recharging apparatus recognition mark, and a rechargeable battery. The robot cleaner automatically docks to the power terminal to recharge the rechargeable battery. The recharging apparatus recognition mark is made of retroreflective material or a metal tape, and the recognition mark sensor may be a photosensor or a proximity sensor.
Abstract:
A robot vacuum cleaner comprises a main body having a driving wheel, a suction port provided underneath the main body for drawing in contaminants on a surface to be cleaned, and a guide member disposed underneath the main body for guiding contaminants on the surface to be cleaned toward the suction port.
Abstract:
A dust receptacle comprises a receptacle body having an air inlet and an air outlet, and detachably mounted in a dust collecting chamber of a robot cleaner, a cover fit in the receptacle body to open and close the air outlet, and a dust outlet formed in the receptacle body. Accordingly, the dust collected in the robot cleaner can be thoroughly and conveniently removed.
Abstract:
A robot vacuum cleaner that comprises a driving unit moving a body on a cleaning surface; a cleaning area detecting unit detecting an area of the cleaning surface; and a central processing unit calculating a spiral cleaning travel pattern corresponding to a shape of each cleaning area based on the information detected by the cleaning area detecting unit to output a cleaning travel signal corresponding the calculated cleaning travel pattern to the driving unit. The cleaning travel pattern can be variable applied depending on a shape of each cleaning area such that the coverage ratio of the cleaning area can increase.