摘要:
Ligand additives having two or more coordination sites in close proximity can be used in the polymer electrolyte of membrane electrode assemblies in solid polymer electrolyte fuel cells in order to reduce the dissolution of catalyst, particularly from the cathode, and hence reduce fuel cell degradation over time.
摘要:
A small molecule or polymer additive can be used in preparation of a membrane electrode assembly to improve its durability and performance under low relative humidity in a fuel cell. Specifically, a method of forming a membrane electrode assembly comprising a proton exchange membrane, comprises providing an additive comprising at least two nitrogen atoms to the membrane electrode assembly.
摘要:
Additives can be used to prepare polymer electrolyte for membrane electrode assemblies in polymer electrolyte fuel cells in order to improve both durability and performance. The additives are chemical complexes comprising certain metal and organic ligand components.
摘要:
A proton conducting polymer electrolyte comprising a proton conducting ionomer cross-linked with an amount of a copolymer additive comprising cross-linking functional groups and other functional groups (e.g. proton carriers, chelating agents, radical scavengers) shows improved durability over the ionomer alone and provides for more stable inclusion of these other functional groups. The copolymer additive comprises at least two types of metal oxide monomers, one having cross-linking functional groups and the other having the other functional groups.
摘要:
A proton conducting polymer electrolyte comprising a proton conducting ionomer cross-linked with an amount of a copolymer additive comprising cross-linking functional groups and other functional groups (e.g. proton carriers, chelating agents, radical scavengers) shows improved durability over the ionomer alone and provides for more stable inclusion of these other functional groups. The copolymer additive comprises at least two types of metal oxide monomers, one having cross-linking functional groups and the other having the other functional groups.
摘要:
A proton conducting polymer electrolyte comprising a proton conducting ionomer cross-linked with an amount of a copolymer additive comprising cross-linking functional groups and other functional groups (e.g. proton carriers, chelating agents, radical scavengers) shows improved durability over the ionomer alone and provides for more stable inclusion of these other functional groups. The copolymer additive comprises at least two types of metal oxide monomers, one having cross-linking functional groups and the other having the other functional groups.
摘要:
Additives can be used to prepare polymer electrolyte for membrane electrode assemblies in polymer electrolyte fuel cells in order to improve both durability and performance. The additives are chemical complexes comprising certain metal and organic ligand components.
摘要:
Ligand additives having two or more coordination sites in close proximity can be used in the polymer electrolyte of membrane electrode assemblies in solid polymer electrolyte fuel cells in order to reduce the dissolution of catalyst, particularly from the cathode, and hence reduce fuel cell degradation over time.
摘要:
A small molecule or polymer additive can be used in preparation of a membrane electrode assembly to improve its durability and performance under low relative humidity in a fuel cell. Specifically, a method of forming a membrane electrode assembly comprising a proton exchange membrane, comprises providing an additive comprising at least two nitrogen atoms to the membrane electrode assembly.
摘要:
A proton conducting polymer electrolyte comprising a proton conducting ionomer cross-linked with an amount of a copolymer additive comprising cross-linking functional groups and other functional groups (e.g. proton carriers, chelating agents, radical scavengers) shows improved durability over the ionomer alone and provides for more stable inclusion of these other functional groups. The copolymer additive comprises at least two types of metal oxide monomers, one having cross-linking functional groups and the other having the other functional groups.