Abstract:
Methods and apparatus relate to processes and systems that introduce microwaves into mixtures containing hydrocarbons. The microwaves cause heating of the hydrocarbons in order to upgrade the hydrocarbons. Such upgrading occurs after recovering the hydrocarbons from within a formation and results in lowering viscosity of the hydrocarbons to enable transportation of the hydrocarbons to offsite locations, such as a refinery.
Abstract:
A process in which a mixture is agitated in a substantially oxygen-free environment to produce an agitated emulsion. The mixture comprises water, one or more surfactants, a hydrate inhibitor, and a monomer. The monomer is then polymerized in the emulsion using an initiator and a catalyst to form a hydrate inhibited latex drag reducer.
Abstract:
Methods and apparatus relate to processes and systems that introduce microwaves into mixtures containing hydrocarbons. The microwaves cause heating of the hydrocarbons in order to upgrade the hydrocarbons. Such upgrading occurs after recovering the hydrocarbons from within a formation and results in lowering viscosity of the hydrocarbons to enable transportation of the hydrocarbons to offsite locations, such as a refinery.
Abstract:
A modified latex drag reducer and methods of making and using the drag reducer in order to reduce friction losses resulting from turbulent fluid flow through a conduit. Particularly, the modified latex drag reducer is formed from an initial latex which is a product of an emulsion polymerization reaction. The initial latex is then modified, preferably by admixing with at least one low HLB surfactant or at least one solvent, or both, to form a modified latex with an enhanced dissolution rate in a hydrocarbon stream over the initial latex.
Abstract:
A drag-reducing polymer suspension is described, along with a method for manufacturing the drag-reducing polymer suspension. The drag-reducing suspension is easily transportable, non-hazardous, and easily handled. The drag-reducing suspension is manufactured by grinding an ultrahigh molecular weight polymer with a wax crystal modifier and suspending it in a suspending fluid.
Abstract:
A process for preparing a drag reducing polymer which is to be added to a liquid hydrocarbon. The liquid hydrocarbon has an asphaltene content of at least about 3 weight percent and an API gravity of less than about 26°. The drag reducing polymer can comprise the residues of a monomer having at least one heteroatom. Treatment of the liquid hydrocarbon with the drag reducing polymer allows a reduction in pressure drop associated with turbulent flow of the liquid hydrocarbon through a conduit.
Abstract:
A system for reducing pressure drop associated with the turbulent flow of asphaltenic crude oil through a conduit. The crude oil has a high asphaltene content and/or a low API gravity. Such reduction in pressure drop is achieved by treating the asphaltenic crude oil with a high molecular weight drag reducing polymer that can have a solubility parameter within about 20 percent of the solubility parameter of the heavy crude oil. The drag reducing polymer can also comprise the residues of monomers having at least one heteroatom.
Abstract:
Low-viscosity drag reducers, systems for delivering low-viscosity drag reducers, and methods of making low-viscosity drag reducers are disclosed. The low-viscosity drag reducers have a viscosity less than 350 cP at a shear rate of 250 sec−1 and a temperature of 60° P. This low-viscosity allows the drag reducers to be delivered through a long and relatively small diameter conduit of a subsea umbilical line without an unacceptable level of pressure drop or plugging of the conduit. The low-viscosity drag reducers can be delivered to a subsea flowline carrying fluids produced from a subterranean formation to 10 thereby provide significant drag reduction in the flow line.
Abstract:
A method of producing a polymer latex drag reducer. The method begins by forming an aqueous solution comprising a surfactant, a buffer and water. The method then forms an organic solution comprising a monomer and a co-stabilizer. The aqueous solution and the organic solution are mixed to form an emulsion. The emulsion is then subjecting to a high shear device to produce a miniemulsion, wherein the monomers are broken into small droplets followed by polymerizing the miniemulsion with the addition of an initiator, wherein a nucleation occurs in the small monomer droplets.
Abstract:
A waste liquid handling system especially suited for installation in the cab of a truck cabin. The system includes a removable urine collection cup, a waste holding tank, and a wash water reservoir having a battery powered pump. These three principal components may be contained within a single cabinet and may be individually removable therefrom. The cabinet may have a collection cup compartment from which the collection cup may emptied by engaging a drain valve. The collection cup may be washed by installing a removable cap which may be connected to the wash water reservoir. The system may include a vent fan and a cabinet light. A bed may be located in the cabinet above the holding tank and the wash water reservoir. Hoses used in the system may utilize quick connect fittings.