Abstract:
Audio signal processing apparatus is disclosed. The audio signal processing apparatus includes a first audio signal extracting section, a second audio signal extracting section, a sense-of-depth controlling section, a sense-of-sound-expansion controlling section, a control signal generating section, and a mixing section. The first audio signal extracting section extracts a main audio signal. The second audio signal extracting section extracts a sub audio signal. The sense-of-depth controlling section processes the extracted main audio signal to control a sense of depth. The sense-of-sound-expansion controlling section processes the extracted sub audio signal to vary a sense of sound expansion. The control signal generating section generates a first control signal with which the sense-of-depth controlling section is controlled and a second control signal with which the sense-of-sound-expansion controlling section is controlled. The mixing section mixes an output audio signal of the sense-of-depth controlling section and an output audio signal of the sense-of-sound-expansion controlling section.
Abstract:
An electronic apparatus includes a first communication unit configured to perform I2C bidirectional communication with an external apparatus using two signal lines included in a transmission path as I2C communication lines, a second communication unit configured to perform bidirectional differential communication with the external apparatus using the two signal lines as high-speed data communication lines, a switching unit configured to select a first communication state in which the first communication unit is connected to the two signal lines or a second communication state in which the second communication unit is connected to the two signal lines, and a controller configured to control operation of the switching unit.
Abstract:
There is provided an AV system including a sink device including a tuner unit that receives and demodulates broadcast wave content, a buffer unit that stores a stream as a demodulation result, a decoding unit that decodes the stored stream by reading the stream from the buffer unit, an SPDIF transmitting circuit that transmits audio data of a decoding result to a source device, and a sink-side transmitting/receiving circuit capable of transmitting/receiving a clock signal used by the decoding unit for decoding a stream to/from the source device and the source device including an SPDIF receiving circuit that receives the audio data transmitted by the SPDIF transmitting circuit and a source-side transmitting/receiving circuit capable of transmitting/receiving the clock signal used by the decoding unit for decoding the stream to/from the sink device.
Abstract:
A transfer device includes: a first network connection control section that controls connection to a first network enabling transfer of content data and/or control data using a first address assigned by a key device in the network; a second network connection control section that controls connection to a second network enabling transfer of content data and/or control data using a second address assigned by a device having a routing function; and an address table that stores the correspondence between the first address of devices on the first network connected via the first network connection control section and the second address of the devices on the second network connected via the second network connection control section.
Abstract:
Audio signal processing apparatus is disclosed. The audio signal processing apparatus includes a first audio signal extracting section, a second audio signal extracting section, a sense-of-depth controlling section, a sense-of-sound-expansion controlling section, a control signal generating section, and a mixing section. The first audio signal extracting section extracts a main audio signal. The second audio signal extracting section extracts a sub audio signal. The sense-of-depth controlling section processes the extracted main audio signal to control a sense of depth. The sense-of-sound-expansion controlling section processes the extracted sub audio signal to vary a sense of sound expansion. The control signal generating section generates a first control signal with which the sense-of-depth controlling section is controlled and a second control signal with which the sense-of-sound-expansion controlling section is controlled. The mixing section mixes an output audio signal of the sense-of-depth controlling section and an output audio signal of the sense-of-sound-expansion controlling section.
Abstract:
An electronic apparatus includes a first communication unit configured to perform I2C bidirectional communication with an external apparatus using two signal lines included in a transmission path as I2C communication lines, a second communication unit configured to perform bidirectional differential communication with the external apparatus using the two signal lines as high-speed data communication lines, a switching unit configured to select a first communication state in which the first communication unit is connected to the two signal lines or a second communication state in which the second communication unit is connected to the two signal lines, and a controller configured to control operation of the switching unit.
Abstract:
Provided is an output control apparatus connected to an audio output apparatus controlling output of audio data, including: a receiving unit configured to receive encoded data obtained by encoding multi-channel audio data; a decoding unit configured to decode the encoded data; an output control unit configured to control output of a predetermined number of channels of audio data among the multi-channel audio data obtained by the decoding; a transmitting unit configured to transmit any one of audio data different from the audio data of which the output is controlled by the output control unit among the multi-channel audio data obtained by the decoding and the encoded data to an audio output apparatus connected through an integrated cable formed by integrating at least a video line, an audio line, and a control line; and a control unit configured to control the audio output apparatus through the integrated cable.
Abstract:
The present invention relates to a data transmission method used in the data transmission system. The data transmission method decrypts encrypted data, applies again encryption effective in the transmission system at transmission time so as to transmit the encrypted data from a sending side to a receiving side. The receiving side applies decryption effective only at the transmission time to the transmitted data to obtain clear text.
Abstract:
Transmission of a high-definition video signal or the like that requires a wide transmission band is realized. A video signal is divided by frames to generate divisional video signals, and the respective divisional video signals are transmitted to an external device via transmission channels independent of one another Transmission of a high-definition video signal or the like that requires a wider transmission band than the transmission band of one transmission channel can be realized in a preferred manner. For each frame, first information indicating the existence of the other divisional video signal to be combined therewith and second information for establishing synchronization with the other divisional video signal to be combined therewith are added to the divisional video signals to be transmitted by a data transmitting unit. In the external device, a reception video signal can be easily obtained by arranging the divisional video signals in the frame order.
Abstract:
High-quality content reproduction is to be realized.A transmission clock is supplied from a sink (repeater) device to a source device via a clock signal line. The source device sends content data to the sink (repeater) device via a predetermined number of differential signal lines in synchronization with the transmission clock supplied from the sink (repeater) device. High-quality content reproduction can be performed in the sink (repeater) device, without the use of any additional lines other than the differential signal lines and the clock signal line. For example, upon receipt of a transmission clock supply request from the source device, the sink (repeater) device supplies the transmission clock to the source device.