摘要:
A DC Link for use with a multi-phase DC to AC converter provides soft-switch opportunities to the main inverter devices only when such opportunities are required. A quasi-resonant rail swings from source to ground potential either with or without the assistance of an auxiliary switch. The quasi-resonant rail swings from ground to source potential with the assistance of an auxiliary switch. Low switch stresses are characteristic in both the main inverter switch devices and the DC link switch devices. Main power is carried predominantly through a DC link switch thereby minimizing power handling requirements of DC link reactive components.
摘要:
A three-phase invertor and control is disclosed for synthesizing low harmonic content AC voltage in the non-linear, or overmodulation, region of inverter operation. A field orientation control provides a reference voltage vector representing the desired AC output voltage in magnitude and angle. Three state, two state, and step inverter operations are used individually and in combinations in accordance with magnitude and angle parameters of the reference voltage vector.
摘要:
A DC Link for use with a multi-phase DC to AC converter provides soft-switch opportunities to the main inverter devices only when such opportunities are required. A quasi-resonant rail swings from source to ground potential either with or without the assistance of an auxiliary switch. The quasi-resonant rail swings from ground to source potential with the assistance of an auxiliary switch. Low switch stresses are characteristic in both the main inverter switch devices and the DC link switch devices. Main power is carried predominantly through a DC link switch thereby minimizing power handling requirements of DC link reactive components.
摘要:
Control methods for operating a power converter circuit, consisting of a full bridge DC/DC converter stage and a full bridge DC/AC inverter stage, for use in automobiles and other vehicles. The DC/DC converter is operated by pulse width modulation and by “soft switching” and “synchronous switching” which involves turning MOSFET switches OFF and ON at strategic times to gain improvements in system performance. The DC/DC converter is also operated at a relatively high and relatively constant duty cycle, and is controlled in such a way as to make the output operate as a current source. The DC/AC inverter has a cycle by cycle overload current protection scheme.
摘要翻译:用于运行电力转换器电路的控制方法,由全桥DC / DC转换器级和全桥DC / AC逆变器级组成,用于汽车和其他车辆。 DC / DC转换器通过脉冲宽度调制和“软开关”和“同步开关”工作,这涉及在战略时间关闭和关闭MOSFET开关,从而提高系统性能。 DC / DC转换器也以相对高且相对恒定的工作周期工作,并且以使得输出作为电流源工作的方式被控制。 DC / AC逆变器具有逐周期过载电流保护方案。
摘要:
An electrical power system includes an alternating current (AC) power source configured to output an AC signal, a single phase pulse-width modulated (PWM) rectifier coupled to the AC power source and to an electrical load; a DC link capacitor coupled in parallel to the load and the PWM rectifier; and an active ripple energy storage circuit. The active ripple energy storage circuit has a first terminal, a second terminal and a third terminal, the active ripple energy storage circuit being coupled in parallel to the electrical load, the PWM rectifier and the DC link capacitor via the first terminal and the second terminal, the third terminal being coupled to the second terminal, the active ripple energy storage circuit being configured to selectively absorb and discharge at least part of the ripple energy.
摘要:
An electrical power system includes an alternating current (AC) power source configured to output an AC signal, a single phase pulse-width modulated (PWM) rectifier coupled to the AC power source and to an electrical load; a DC link capacitor coupled in parallel to the load and the PWM rectifier; and an active ripple energy storage circuit. The active ripple energy storage circuit has a first terminal, a second terminal and a third terminal, the active ripple energy storage circuit being coupled in parallel to the electrical load, the PWM rectifier and the DC link capacitor via the first terminal and the second terminal, the third terminal being coupled to the second terminal, the active ripple energy storage circuit being configured to selectively absorb and discharge at least part of the ripple energy
摘要:
A method of operating a fuel cell includes the step of selectively connecting and disconnecting the fuel cell to at least one electrical load dependent at least in part upon at least one of a fuel cell voltage, a fuel cell current and a fuel cell temperature.
摘要:
A fuel cell system in accordance with the invention includes a single, central electronic controller (CPU) for controlling at least the Air Handling sub-system, the Reformer sub-system, the Power Electronics sub-system, and the Customer Interface sub-system. The central controller provides a central location for easier serviceability; increases data transport efficiency by eliminating lengthy links between distributed controllers; eliminates the need for multiple mechanical enclosures; allows for controller thermo conditioning in one mechanical enclosure; and reduces parasitic power losses by employing a single power supply.
摘要:
A system for co-generation of electricity combining a hydrocarbon catalytic reformer, an SOFC assembly and a generator driven by a gas turbine. The fuel cell assembly recycles a high percentage of anode exhaust gas into the reformer. Oxygen for reforming is derived from water in an endothermic process. The stack exit temperature is normally above 800° C. DC power from the fuel cell assembly and AC power from the gas turbine generator are directed to a power conditioner. Anode exhaust gas including carbon monoxide and hydrogen is divided into a plurality of portions by which heat may be added to the reforming, gas turbine, and cathode air heating processes. Water may be recovered from the exhaust. A power system in accordance with the invention is capable of operating at a higher total efficiency than either the fuel cell component or the gas turbine component alone.
摘要:
Propulsion control system and method are provided for use in vehicles including a propulsion motor that is powered by a fuel cell. The fuel cell unit produces a compatible voltage for the propulsion motor, thereby removing the need for a dc/dc boost converter. A buck/boost converter and a standard 12 volt battery are used to start the fuel cell. An inverter receives dc electric voltage from the fuel cell and outputs ac electric voltage to the propulsion motor. A vehicle controller receives a voltage input from the fuel cell unit and outputs a current reference to a comparing device. The comparing device compares the current reference from the vehicle controller to an actual current of the fuel cell unit and then outputs a signal to a PI control which outputs a control signal to a fuel cell controller, whereby the power output of the fuel cell is controlled based on the actual current of the fuel cell.