Abstract:
The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs. No decoding circuitry is necessary. Before programming, the drivers precharge all the channels to an intermediate voltage. During programming, the channels that are not directly connected to the antifuse being programmed are switched to high impedance. As a result, the power consumption is reduced and the programming proceeds faster.
Abstract:
The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs. No decoding circuitry is necessary. Before programming, the drivers precharge all the channels to an intermediate voltage. During programming, the channels that are not directly connected to the antifuse being programmed are switched to high impedance. As a result, the power consumption is reduced and the programming proceeds faster.
Abstract:
The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs. No decoding circuitry is necessary. Before programming, the drivers precharge all the channels to an intermediate voltage. During programming, the channels that are not directly connected to the antifuse being programmed are switched to high impedance. As a result, the power consumption is reduced and the programming proceeds faster.
Abstract:
A field programmable gate array has antifuses disposed over logic modules. Each of these antifuses includes a conductive plug and an overlaying region of programmable material (for example, amorphous silicon). To program one of these antifuses, an electric connection is formed through the programmable material to couple the conductive plug to a metal conductor that overlays the region of programmable material. The metal conductor includes a layer of a barrier metal to separate another metal of the conductor (for example, aluminum from an aluminum layer) from migrating into the programmable material when the antifuse is unprogrammed. In some embodiments, less than three percent of all antifuses of the field programmable gate array has a corner (from the top-down perspective) of the region of programmable material that is disposed (within lateral distance DIS of the conductive plug) underneath the metal conductor of that antifuse. In some embodiments, less than seventy-five percent of all antifuses of the field programmable gate array have an edge of the region of programmable material disposed (within lateral distance DIS of the conductive plug) underneath the metal conductor of that antifuse. Other antifuse structures and methods are also disclosed for preventing programmable material corners and/or edges from compromising yield and/or reliability of programmable devices.
Abstract:
An amorphous silicon antifuse has a bottom electrode, a dielectric overlying the bottom electrode, amorphous silicon contacting the bottom electrode in a via in the dielectric, and the top electrode over the amorphous silicon. Spacers are provided in the via corners between the amorphous silicon and the top electrode. The spacers smooth the surface above the amorphous silicon, provide good top electrode step coverage, and reduce leakage current. Another amorphous silicon antifuse is provided in which the amorphous silicon layer is planar. The planarity makes the amorphous silicon layer easy to manufacture. A programmable CMOS circuit is provided in which the antifuses are formed over the intermetal dielectric. The antifuses are not affected by the high temperatures associated with the formation of the intermetal dielectric and the first-metal contacts. The intermetal dielectric protects the circuit elements during the antifuse formation. The bottom electrodes of the antifuses are connected to the first-metal contacts. The overall capacitance associated with the antifuses is low, and hence the circuit is fast.
Abstract:
An amorphous silicon antifuse has a bottom electrode, a dielectric overlying the bottom electrode, amorphous silicon contacting the bottom electrode in a via in the dielectric, and the top electrode over the amorphous silicon. Spacers are provided in the via corners between the amorphous silicon and the top electrode. The spacers smooth the surface above the amorphous silicon, provide good top electrode step coverage, and reduce leakage current. Another amorphous silicon antifuse is provided in which the amorphous silicon layer is planar. The planarity makes the amorphous silicon layer easy to manufacture. A programmable CMOS circuit is provided in which the antifuse are formed over the intermetal dielectric. The antifuse are not affected by the high temperatures associated with the formation of the intermetal dielectric and the first-metal contacts. The intermetal dielectric protects the circuit elements during the antifuse formation. The bottom electrodes of the antifuses are connected to the first-metal contacts. The overall capacitance associated with the antifuses is low, and hence the circuit is fast.
Abstract:
A field programmable gate array has antifuses disposed over logic modules. Each of these antifuses includes a conductive plug and an overlaying region of programmable material (for example, amorphous silicon). To program one of these antifuses, an electric connection is formed through the programmable material to couple the conductive plug to a metal conductor that overlays the region of programmable material. The metal conductor includes a layer of a barrier metal to separate another metal of the conductor (for example, aluminum from an aluminum layer) from migrating into the programmable material when the antifuse is unprogrammed. In some embodiments, less than three percent of all antifuses of the field programmable gate array has a corner (from the top-down perspective) of the region of programmable material that is disposed (within lateral distance DIS of the conductive plug) underneath the metal conductor of that antifuse. In some embodiments, less than seventy-five percent of all antifuses of the field programmable gate array have an edge of the region of programmable material disposed (within lateral distance DIS of the conductive plug) underneath the metal conductor of that antifuse. Other antifuse structures and methods are also disclosed for preventing programmable material corners and/or edges from compromising yield and/or reliability of programmable devices.
Abstract:
Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
Abstract:
A programmable device comprises a first antifuse programmed with a first programming method and a second antifuse programmed with a second programming method, whereby an actual operating current flowing through the second antifuse exceeds a maximum permissible operating current of the first antifuse but does not exceed a maximum permissible operating current of the second antifuse, whereby an actual operating current flowing through the first antifuse does not exceed the maximum permissible operating current of the first antifuse, and whereby an actual operating current flowing through the second antifuse does not exceed the maximum permissible operating current of the second antifuse. By allowing the use of a programming method on some antifuses which would not be adequate for the programming of other antifuses, the realization of user-specific circuits in field programmable devices is facilitated and the reliability of user-specific circuits realized in field programmable devices is enhanced.
Abstract:
Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.