Abstract:
A method includes receiving an input signal comprising an original domain signal and creating a first window data set and a second window data set from the signal, wherein an initiation of the second window data set is offset from an initiation of the first window data set, converting the first window data set and the second window data set to a frequency domain and storing the resulting data as data in a second domain different from the original domain, performing complex spectral phase evolution (CSPE) on the second domain data to estimate component frequencies of the first and second window data sets, using the component frequencies estimated in the CSPE, sampling a set of second-domain high resolution windows to select a mathematical representation comprising a second-domain high resolution window that fits at least one of the amplitude, phase, amplitude modulation and frequency modulation of a component of an underlying signal wherein the component comprises at least one oscillator peak, generating an output signal from the mathematical representation of the original signal as at least one of: an audio file; one or more audio signal components; and one or more speech vectors and outputting the output signal to an external system.
Abstract:
A method of processing a signal, including taking a signal formed from a plurality of source signal emitters and expressed in an original domain, decomposing the signal into a mathematical representation of a plurality of constituent elements in an alternate domain, analyzing the plurality of constituent elements to associate at least a subset of the constituent elements with at least one of the plurality of source signal emitters, separating at least a subset of the constituent elements based on the association and reconstituting at least a subset of constituent elements to produce an output signal in at least one of the original domain, the alternate domain and another domain.
Abstract:
A method includes receiving an input signal comprising an original domain signal and creating a first window data set and a second window data set from the signal, wherein an initiation of the second window data set is offset from an initiation of the first window data set, converting the first window data set and the second window data set to a frequency domain and storing the resulting data as data in a second domain different from the original domain, performing complex spectral phase evolution (CSPE) on the second domain data to estimate component frequencies of the first and second window data sets, using the component frequencies estimated in the CSPE, sampling a set of second-domain high resolution windows to select a mathematical representation comprising a second-domain high resolution window that fits at least one of the amplitude, phase, amplitude modulation and frequency modulation of a component of an underlying signal wherein the component comprises at least one oscillator peak, generating an output signal from the mathematical representation of the original signal as at least one of: an audio file; one or more audio signal components; and one or more speech vectors and outputting the output signal to an external system.
Abstract:
A method of processing a signal, including taking a signal formed from a plurality of source signal emitters and expressed in an original domain, decomposing the signal into a mathematical representation of a plurality of constituent elements in an alternate domain, analyzing the plurality of constituent elements to associate at least a subset of the constituent elements with at least one of the plurality of source signal emitters, separating at least a subset of the constituent elements based on the association and reconstituting at least a subset of constituent elements to produce an output signal in at least one of the original domain, the alternate domain and another domain.
Abstract:
A method includes receiving an input signal comprising an original domain signal and creating a first window data set and a second window data set from the signal, wherein an initiation of the second window data set is offset from an initiation of the first window data set, converting the first window data set and the second window data set to a frequency domain and storing the resulting data as data in a second domain different from the original domain, performing complex spectral phase evolution (CSPE) on the second domain data to estimate component frequencies of the first and second window data sets, using the component frequencies estimated in the CSPE, sampling a set of second-domain high resolution windows to select a mathematical representation comprising a second-domain high resolution window that fits at least one of the amplitude, phase, amplitude modulation and frequency modulation of a component of an underlying signal wherein the component comprises at least one oscillator peak, generating an output signal from the mathematical representation of the original signal as at least one of: an audio file; one or more audio signal components; and one or more speech vectors and outputting the output signal to an external system.
Abstract:
A method of processing a signal, including taking a signal formed from a plurality of source signal emitters and expressed in an original domain, decomposing the signal into a mathematical representation of a plurality of constituent elements in an alternate domain, analyzing the plurality of constituent elements to associate at least a subset of the constituent elements with at least one of the plurality of source signal emitters, separating at least a subset of the constituent elements based on the association and reconstituting at least a subset of constituent elements to produce an output signal in at least one of the original domain, the alternate domain and another domain.
Abstract:
A method of processing a signal includes taking a signal recorded by a plurality of signal recorders, applying at least one super-resolution technique to the signal to produce an oscillator peak representation of the signal comprising a plurality of frequency components for a plurality of oscillator peaks, computing at least one Cross Channel Complex Spectral Phase Evolution (XCSPE) attribute for the signal to produce a measure of a spatial evolution of the plurality of oscillator peaks between the signal, identifying a known predicted XCSPE curve (PXC) trace corresponding to the frequency components and at least one XCSPE attribute of the plurality of oscillator peaks and utilizing the identified PXC trace to determine a spatial attribute corresponding to an origin of the signal.
Abstract:
A method includes receiving an input signal comprising an original domain signal and creating a first window data set and a second window data set from the signal, wherein an initiation of the second window data set is offset from an initiation of the first window data set, converting the first window data set and the second window data set to a frequency domain and storing the resulting data as data in a second domain different from the original domain, performing complex spectral phase evolution (CSPE) on the second domain data to estimate component frequencies of the first and second window data sets, using the component frequencies estimated in the CSPE, sampling a set of second-domain high resolution windows to select a mathematical representation comprising a second-domain high resolution window that fits at least one of the amplitude, phase, amplitude modulation and frequency modulation of a component of an underlying signal wherein the component comprises at least one oscillator peak, generating an output signal from the mathematical representation of the original signal as at least one of: an audio file; one or more audio signal components; and one or more speech vectors and outputting the output signal to an external system.
Abstract:
A method of processing a signal, including taking a signal formed from a plurality of source signal emitters and expressed in an original domain, decomposing the signal into a mathematical representation of a plurality of constituent elements in an alternate domain, analyzing the plurality of constituent elements to associate at least a subset of the constituent elements with at least one of the plurality of source signal emitters, separating at least a subset of the constituent elements based on the association and reconstituting at least a subset of constituent elements to produce an output signal in at least one of the original domain, the alternate domain and another domain.