Abstract:
Provided are a method for post-treatment of a carbonaceous material using dehydrocyclization, a carbonaceous material post-treated by the method, and a polymer composite material including the carbonaceous material. More particularly, provided are a method for post-treatment of a carbonaceous material using dehydrocyclization, including subjecting the carbonaceous material to dehydrocyclization at room temperature to heal structural defects in the carbonaceous material, while increasing the effective conjugated length of the carbonaceous material to improve the electrical conductivity thereof, as well as a carbonaceous material post-treated by the method and a polymer composite material including the carbonaceous material.
Abstract:
The present disclosure relates to a polyimide-graphene composite material and a method for preparing same. More particularly, it relates to a polyimide-graphene composite material prepared by adding modified graphene and a basic catalyst during polymerization of a polyimide precursor so as to improve mechanical strength and electrical conductivity and enable imidization at low temperature and a method for preparing same.
Abstract:
A cured epoxy resin material is depolymerized by using a composition including a compound represented by the chemical formula of XOmYn (wherein X is hydrogen, alkali metal or alkaline earth metal, Y is halogen, m is a number satisfying 1≤m≤8 and n is a number satisfying 1≤n≤6), and a reaction solvent, wherein X is capable of being dissociated from XOmYn and Y radical is capable of being produced from XOmYn in the reaction solvent. It is possible to carry out depolymerization of a cured epoxy resin material, for example, at a temperature of 200° C., specifically 100° C. or lower, and to reduce processing cost and energy requirement. It is also possible to substitute for a reaction system using an organic solvent as main solvent, so that the contamination problems caused by the organic solvent functioning as separate contamination source may be solved and environmental contamination or pollution may be minimized.
Abstract:
For depolymerization of a cured epoxy resin material, used is a composition including a transition metal salt or a transition metal oxide containing a transition metal element (metal element that belongs to Groups 3-12 in the Periodic Table). In the reaction solvent, an oxidation occurs by the medium of the transition metal element so that the cured epoxy resin material may be depolymerized and decomposed. In this manner, it is possible to carry out depolymerization of a cured epoxy resin material at a temperature of 200° C., specifically 100° C. or lower very simply and rapidly, and to reduce the processing cost and energy requirement.
Abstract:
For depolymerization of a cured epoxy resin material, used is a composition including a transition metal salt or a transition metal oxide containing a transition metal element (metal element that belongs to Groups 3-12 in the Periodic Table). In the reaction solvent, an oxidation occurs by the medium of the transition metal element so that the cured epoxy resin material may be depolymerized and decomposed. In this manner, it is possible to carry out depolymerization of a cured epoxy resin material at a temperature of 200° C., specifically 100° C. or lower very simply and rapidly, and to reduce the processing cost and energy requirement.
Abstract:
The present invention relates to a 3D printer polymer filament improving strength of a polymer resin and providing durability by using graphene coated metal nanoparticles and carbon nanotubes, and expressing a function of the graphene coated metal nanoparticles and the carbon nanotubes as a filler, and a manufacturing method thereof. Accordingly, according to the present invention, the 3D printer polymer filament and the manufacturing method includes mixing the graphene coated metal nanoparticles, the carbon nanotubes, and the polymer, using the manufactured mixture to form a filament through extrusion, and forming a 3D printed article by using the filament, thereby improving the strength and the durability by using the graphene coated metal nanoparticles and the carbon nanotubes.
Abstract:
The present disclosure relates to a preparation method for lowering a production cost of a high performance carbon fiber using a nanocarbon composite carbon fiber precursor fiber crosslinked by electron beam. More particularly, the present disclosure relates to a preparation method of a nanocarbon composite carbon fiber, including a nanocarbon containing step for containing nanocarbon in a structure of a carbon fiber precursor fiber, a nanocarbon composite carbon fiber precursor fiber preparation step for forming a composite of the nanocarbon and the carbon fiber precursor fiber by electron beam irradiation to enable crosslinking for improved heat resistance of the carbon fiber precursor fiber containing the nanocarbon, an oxidation⋅stabilization step for oxidizing⋅stabilizing the nanocarbon composite carbon fiber precursor fiber, and a carbonization step for carbonizing the oxidized⋅stabilized nanocarbon composite carbon fiber precursor fiber, and a nanocarbon composite carbon fiber prepared by the preparation method.