Abstract:
Disclosed are a flexible electrode substrate including a porous electrode, a method for manufacturing the flexible electrode substrate, and an energy storage element including the flexible electrode substrate. The flexible electrode substrate can be attached to various objects due to the excellent electrochemical properties and the adhesive properties thereof and thus is very useful. In particular, since the flexible electrode substrate can be used as an electrode of an energy storage element, an energy storage element including the flexible electrode substrate can be attached to various objects and thus can be used as a sticker-type energy storage element. In addition, the flexible electrode substrate can be easily manufactured by transfer method using a difference in adhesive strength and thus allows a simple manufacturing process thereof. Furthermore, electrodes having various patterns can be manufactured with high level of efficiency through simple adjustment of the manufacturing process.
Abstract:
Disclosed herein are a high-temperature structure for measuring properties of a curved thermoelectric device, which is capable of precisely measuring the properties of a medium-temperature curved thermoelectric device that is applied to a tube-type waste heat source and is used in research, and a system and a method for measuring the properties using the same. The high-temperature structure may include a plurality of rod-shaped cartridge heaters, and a heating element having a surface that is a curved surface coming into contact with a lower end of the curved thermoelectric device, having a plurality of holes for accommodating the plurality of cartridge heaters, and directly heating the lower end of the curved thermoelectric device.
Abstract:
This invention relates to a metalized skutterudite thermoelectric material having improved long-term stability and a method of manufacturing the same, wherein the skutterudite thermoelectric material is metalized with a multilayer structure including a Ti layer for preventing the diffusion of the skutterudite thermoelectric material and a Fe—Ni layer for preventing an increase in the thickness of an intermetallic compound layer, whereby the performance of the skutterudite thermoelectric material does not deteriorate due to diffusion and formation of the intermetallic compound even upon long-term use, thus exhibiting improved stability of use, and moreover, the lifetime and stability of a thermoelectric power generation module using the skutterudite thermoelectric material can be increased, whereby the power generation efficiency of the thermoelectric power generation module can be increased in the long term.
Abstract:
Disclosed is a method of forming a chalcopyrite light-absorbing layer for a solar cell, including: forming a thin film including a chalcopyrite compound precursor; and radiating light on the thin film, wherein the chalcopyrite compound precursor absorbs light energy and is thus crystallized. When forming the chalcopyrite light-absorbing layer, light, but not heat, is applied, thus preventing problems, including damage to a substrate due to heat and formation of MoSe2 due to heating of the Mo rear electrode. Furthermore, long-wavelength light, which deeply penetrates the thin film, is first radiated, and short-wavelength light, which shallowly penetrates the thin film, is subsequently radiated, thereby sequentially forming the chalcopyrite light-absorbing layer from the bottom of the thin film.
Abstract:
The invention relates a thin-film solar cell. In the related art, a buffer layer, a transparent electrode, and a grid electrode are formed on a light absorption layer, but in the invention, the buffer layer and the transparent electrode are not formed on a light absorption layer, and the buffer layer, the transparent electrode, and the grid electrode are formed under a CIGS face such that solar light is directly input to the light absorption layer without obstacles, and the first electrode and the buffer layer are patterned in a saw-toothed structure to engage with each other to reduce a distance by which electrons or holes generated by absorbing light energy move to the electrode or the buffer layer.