Abstract:
The present invention provides: an electrode-supporting type of gas-separation membrane module for selectively effecting the passage of a gas via an electron exchange reaction due to a coupling-material layer and gas exchange via an ion-conducting separation layer; a tubular structure of same; a production method for the tubular structure; and a hydrocarbon-reforming method using the gas-separation membrane module. The present invention is advantageous in that outstanding chemical and mechanical durability can be ensured by using a fluorite-based ion-conducting membrane which is chemically stable in CO2 and H2O atmospheres in particular, at high temperature, and in that a pure gas can be produced inexpensively since the passage of gas occurs due to an internal circuit even without applying a voltage from the outside.
Abstract:
Disclosed herein is an electrochemical device forming a chip-capacitor or a super-capacitor. The electrochemical device includes: a ceramic substrate having a nonconductive ceramic layer, a current collecting layer disposed on a nonconductive ceramic layer and made of ceramic or cermet, and a metal layer arranged on outer surfaces of the nonconductive ceramic layer and the current collecting layer; an electrode having a positive electrode and a negative electrode and formed on the current collecting layer; and a nonconductive ceramic packaging module located on the ceramic substrate to accommodate electrolyte therein, wherein the metal layer is exposed to the outside of the nonconductive ceramic packaging module.
Abstract:
An embodiment provides an alkali metal thermal-to-electric converter including a thermal-to-electric conversion cell including three layers including an anode layer, a solid electrolyte layer, and a cathode layer, having a convex-concave shape with alternately appearing concave and convex portions, and configured to move alkali metal ions through the solid electrolyte layer, a high temperature portion that supplies a high temperature alkali metal fluid to the anode layer of the thermal-to-electric conversion cell, and a low temperature portion that condenses the alkaline metal fluid discharged to the cathode layer of the thermal-to-electric conversion cell to a low temperature and moves the alkaline metal fluid to the high temperature portion.
Abstract:
A unit cell includes an air inlet/outlet that is formed on a frame unit rather than being installed in a fuel electrode (anode) to simplify a sealing process, and accordingly, a continuous process using a tape casting technique may be performed. In addition, an electrolyte material that is in contact with an air electrode (cathode) in the frame unit is optimized to improve ion conductivity and a porosity of an upper layer material of the fuel electrode unit is optimized to increase fuel diffusion from a gas channel to an electrolyte layer. In addition, a sealing process performed inside the unit cell or between the unit cells of the stack is stabilized and strongly maintained, and thus a fuel cell using the unit cell and the stack disclosed herein may have excellent economic feasibility and high energy efficiency.