Abstract:
The present invention relates to a non-aqueous cathode material for lithium secondary batteries using a spherical transition metal complex carbonate, and a method for preparing same. According to the present invention, since the surface of a spherical transition metal complex carbonate, which is prepared by using a cobalt material, nickel material, manganese material, carboxyl group material, and ammonia material, is coated with titanium dioxide. In addition, by mixing the prepared, surface-coated transition metal complex carbonate with a lithium material and heat-treating the resultant material, it is possible to prepare a spherical Li-rich cathode material having a primary particle size of 200 nm or more, and a 0.1 C capacity of 250 mAh/g or more, and capable of implementing 96% or more of the initial capacity in a full cell after charging and discharging 60 times.
Abstract:
The present disclosure provides a separator, a lithium metal negative electrode, and a lithium metal secondary battery which include a solid superacid coating layer. The solid superacid coating layer suppresses a growth of lithium dendrites in a lithium metal secondary battery employing lithium metal as a negative electrode by improving a mobility and a reaction uniformity of lithium at an interface of the lithium metal negative electrode and an electrolyte solution. In the lithium metal secondary battery, the solid superacid coating layer comprising solid superacid material having a porous structure is formed on at least one of the lithium metal negative electrode and the separator.
Abstract:
The present invention relates to a cathode active material, a lithium secondary battery having the same, and a method for preparing the same, and the purpose of the present invention is to provide battery properties and thermal stability under a high temperature environment even if the Ni content of M in LiMO2(M=Ni, Co, Ti, Zr, etc.) of layered oxide is increased to 65% or more. The present invention provides a cathode active material for a lithium secondary battery which is represented by chemical formula 1 below and is obtained by substituting a part of Ni, Co and Mn for a dissimilar metal (M) through heat treatment with a lithium source after coating the dissimilar metal (M) on the surface of a transition metal precursor comprising Ni, Co and Mn. LiNiaCobMncMdO2 [Chemical Formula 1] (0.6
Abstract:
The present invention relates to a cathode active material, a lithium secondary battery having the same, and a method for preparing the same, and the purpose of the present invention is to provide battery properties and thermal stability under a high temperature environment even if the Ni content of M in LiMO2(M=Ni, Co, Ti, Zr, etc.) of layered oxide is increased to 65% or more. The present invention provides a cathode active material for a lithium secondary battery which is represented by chemical formula 1 below and is obtained by substituting a part of Ni, Co and Mn for a dissimilar metal (M) through heat treatment with a lithium source after coating the dissimilar metal (M) on the surface of a transition metal precursor comprising Ni, Co and Mn. LiNiaCobMncMdO2 [Chemical Formula 1] (0.6