Abstract:
Provided is a system for monitoring a state of a user. The system includes a chair including a backrest and a seat plate, at least one flexible tactile sensor positioned in the back plate or seat plate and configured to sense a motion of a user who sits on the chair. The system further includes a monitoring apparatus configured to monitor the state of the user based on the sensed value received from at least one flexible tactile sensor.
Abstract:
A wearable device is disclosed. In one embodiment, the device includes: a sensor array having a plurality of sensors each detecting a physical change in epidermis of a corresponding body area and a body movement determination unit configured to determine movement of a body part based on sensing signals respectively received from the plurality of sensors.
Abstract:
The described technology relates to a wearable electronic device. The wearable electronic device may include a touch display, a rim surrounding the touch display, a rim touch sensor disposed on at least a portion of the rim, a band portion that allows the wearable electronic device to be worn on a user's wrist, and a control unit configured to receive a rim touch on the rim through the rim touch sensor and generate a control signal for controlling the wearable electronic device based on at least one of attributes of the rim touch.
Abstract:
Provided is a smart bed for monitoring a state of a user. The smart bed includes a mattress including at least one flexible tactile sensor configured to sense a state of a user lying on the bed and a bed frame configured to support the mattress. The flexible tactile sensor is positioned below a specific portion of the user.
Abstract:
Provided are a flexible tactile sensor and a method for manufacturing the same. The flexible tactile sensor includes a polymer layer, a first metal layer formed over the polymer layer and a first sensor layer formed over the first metal layer, the first sensor layer comprising a strain gauge configured to change its resistance according to a first strain and a metal wire connected to the strain gauge. The flexible tactile sensor also includes a first cover layer configured to protect the first sensor layer, a second metal layer formed under the polymer layer, a second sensor layer formed under the second metal layer. The second sensor layer includes a strain gauge configured to change its resistance according to a second strain and a metal wire connected to the strain gauge of the second metal layer and a second cover layer configured to protect the second sensor layer.
Abstract:
An ultraviolet-ray (UV) sensor is disclosed. In one embodiment, the UV sensor includes a piezoelectric material, a sensing film arranged on the piezoelectric material and senses ultraviolet rays, an elastic wave input unit arranged on one end of the sensing film on the piezoelectric material and provides the sensing film with an elastic wave generated based on an electrical signal and an elastic wave output unit arranged on the other end of the sensing film on the piezoelectric material and senses a change in frequency of the electrical signal generated based on the provided elastic wave. The UV sensor improves sensitivity of the sensor by enabling the particles having large surface areas due to their characteristics to react with a larger amount of ultraviolet rays. the UV sensor can secure price competitiveness since the UV sensor measures a change in frequency of the elastic wave using zinc oxide (ZnO) nanoparticles.
Abstract:
Disclosed is a remote controller having a dual touch pad and a method of control using the same, the remote controller including a communication unit, a first touch pad, a second touch pad, an elastic layer, a position sensing unit, and a control unit. The first and second touch pads are installed adjacent to each other, and each have the elastic layer formed thereon, to output first and second selection signals, respectively, to control the control target device. The position sensing unit senses whether the first touch pad and the second touch pad are positioned in a longitudinal direction or in a traverse direction and outputs a third selection signal. The control unit receives at least one of the first to third selection signals from the first touch pad, the second touch pad, or the position sensing unit, and transmits a control signal to the control target device.
Abstract:
An electronic device according to an embodiment of the present invention may include a display configured to display a first screen; a force direction sensing unit configured to detect a force direction of a contact applied to one point by an external object; and a control unit configured to sense an occurrence of a predetermined event to logically divide the display into at least two regions including a first region and a second region, acquire a force direction of a first contact associated with the predetermined event from the force direction sensing unit, determine a region from among the at least two regions to display the first screen according to the force direction of the first contact, and display the first screen on the determined region.
Abstract:
A gesture detection system is disclosed. The gesture detection system includes a gesture detection sensor including a base sheet formed of a skin-conformable material, to be tightly attached to a skin, a sensing part formed at the base sheet, to measure deformation of the skin, and an electrode pattern formed at the base sheet and connected, at one end thereof, to the sensing part, to transmit an electrical signal varying in accordance with the deformation of the skin, a reader module connected to the gesture detection sensor, to read the electrical signal, and a computing device configured to receive the electrical signal from the reader module, thereby recognizing a gesture of the user. Through disposable use of the gesture detection sensor and multiple use of the reader module and the computing device, a hygienic gesture input environment may be provided to a plurality of users at low cost.
Abstract:
The described technology relates to a wearable electronic device. The wearable electronic device may include a touch display, a rim surrounding the touch display, a rim touch sensor disposed on at least a portion of the rim, a band portion that allows the wearable electronic device to be worn on a user's wrist, and a control unit configured to receive a rim touch on the rim through the rim touch sensor and generate a control signal for controlling the wearable electronic device based on at least one of attributes of the rim touch.