Abstract:
A method for extending initial image data of a subject for dose estimation includes obtaining first image data of the subject for dose calculation, wherein the first image data has a first field of view. The method further includes obtaining second image data for extending the field of view of the first image data. The second image data has a second field of view that is larger than the first field of view. The method further includes extending the first field of view based on the second image data, producing extended image data.
Abstract:
The invention relates to a method and an image processing device (50) for the registration of two images (I1, I2) that may for example be provided by a CT scanner (10) and/or an MRI scanner (20). According to one embodiment of the invention, the images are first globally registered (GR) with a given registration algorithm using a first parameter vector (p). A user may then select a region of interest ROI, and a plurality of local registrations (LR1, . . . LRs, . . . LRn) are calculated for this ROI using the same registration algorithm but different parameter vectors (p, p, . . . p). The results of the local registrations (LR1, . . . LRs, . . . LRn) are displayed and the user can select the best local registration(s). In a final step, the selected local registration(s) (LRs) and the global registration (GR) may be merged. Additionally or alternatively, a parameter vector for a local registration in the ROI may be determined by an automatic analysis of the ROI.
Abstract:
The invention relates to an apparatus (18) for calculating an x-ray dose distribution within an object for a computed tomography examination. A primary flux determination unit (15) determines firstly a primary flux distribution within the object, wherein then this determined primary flux distribution is used as an initial total flux distribution by a total flux determination unit (16) while applying a six-flux model algorithm. This allows the determination of the total flux distribution to start with a relatively good first approximation of the total flux distribution such that the six-flux model algorithm can determine the total flux distribution very fast. The determined total flux distribution is finally used by a dose distribution determination unit (17) for determining a total dose distribution. The apparatus allows therefore for a very fast determination of x-ray dose distributions for computed tomography examinations.