TRANSFORMATION DETERMINATION FOR ANATOMICALLY ALIGNING FRAGMENTS OF A BROKEN BONE

    公开(公告)号:US20210077191A1

    公开(公告)日:2021-03-18

    申请号:US16619954

    申请日:2018-06-26

    Abstract: There is provided a computer-implemented method (200) and apparatus for determining a transformation for anatomically aligning fragments of a broken bone. An image of the broken bone of the subject is acquired (202). The bone is broken into two or more fragments. A model of a corresponding unbroken bone and at least one parameter is acquired. The at least one parameter defines one or more deformations to the model that are permitted when fitting portions of the model of the unbroken bone to corresponding fragments of the broken bone (204). Portions of the model of the unbroken bone are fit to corresponding fragments of the broken bone based on the at least one parameter (206). A transformation is determined that anatomically aligns the fragments of the broken bone with the corresponding portions of the model (208).

    DETERMINING AN OPTIMAL PLACEMENT OF A PEDICLE SCREW

    公开(公告)号:US20190133690A1

    公开(公告)日:2019-05-09

    申请号:US16096367

    申请日:2017-04-26

    Abstract: The present invention relates to a device (2) for determining an optimal placement of a pedicle screw (4), comprising a processing unit (14), wherein the processing unit is configured to receive a model data set representing a model surface (22) of a human vertebra model (18) and a pedicle screw model (30) being optimally placed in a span of a pedicle section (28) of the model surface, wherein the processing unit is configured to receive 5 image data representing a surface image (26) of at least one human vertebra (6), GO and wherein the processing unit is configured to adapt the model data set for each of a number of the at least one human vertebra, such that an adapted model data set representing a correspondingly adapted model surface (36), which fits to the surface image of the respective human vertebra, is provided for each of the number of the at least one human vertebra, wherein each of the 10 adapted model data sets also represents a correspondingly adapted pedicle screw model (38). The present invention further relates to a corresponding method, a corresponding computer program element and a corresponding computer readable medium.

    FIELD OF VIEW MATCHING FOR MOBILE 3D IMAGING

    公开(公告)号:US20230091213A1

    公开(公告)日:2023-03-23

    申请号:US17782871

    申请日:2020-12-02

    Abstract: The present invention relates to matching a field of view for mobile 3D imaging, for example mobile C-arm 3D imaging In order to provide image data that is improved for comparing purposes, for example when using a mobile X-ray imaging system, first location information of a first reconstruction volume based on a first sequence of X-ray images of a region of interest of a subject acquired along a first trajectory in a first position of an X-ray imaging device is received. Further, a planned second trajectory for acquiring a second sequence of X-ray images in a second position of the X-ray imaging device is received and a resulting second reconstruction volume for the second sequence of X-ray images is calculated. Then, second location information for the second reconstruction volume is determined. Further, a degree of comparability for the first reconstruction volume and the second reconstruction volume is determined based on the first location information and the second location information. An adapted second trajectory is calculated that results in.

    SIMULTANEOUS PARTIAL VOLUME CORECTION AND SEGMENTATION REFINEMENT

    公开(公告)号:US20210350544A1

    公开(公告)日:2021-11-11

    申请号:US17282008

    申请日:2019-09-27

    Abstract: The invention provides for a medical apparatus (100, 400, 600) comprising a memory (110) for storing machine executable instructions (120) and a processor (104) for controlling the medical apparatus. Execution of the machine executable instructions causes the processor to: receive (200) a medical image (122) descriptive of a three-dimensional anatomy of a subject (418); and provide (202) an image segmentation (124) by segmenting the medical image into multiple tissue regions (300, 302) using a model-based segmentation. The model-based segmentation assigns a tissue type to each of the multiple regions. The model-based segmentation has a surface mesh (304). The segmentation is corrected by using the tissue type assigned to each of the multiple regions to correct for partial volume effects at boundaries formed by the surface mesh between at least some of the multiple tissue regions.

Patent Agency Ranking