Abstract:
Methods and systems for determining boundaries of patterned features formed on a specimen from an unresolved image of the specimen are provided. One system includes computer subsystem(s) configured for comparing a difference image in which patterned feature(s) are unresolved to different simulated images. The different simulated images are generated by simulating difference images generated for the patterned feature(s) formed on the specimen with different perturbations, respectively. The computer subsystem(s) are configured for, based on the comparing, assigning an amplitude to each of the different perturbations. The computer subsystem(s) are further configured for determining one or more boundaries of the patterned feature(s) formed on the specimen by applying the different perturbations to one or more designed boundaries of the patterned feature(s) with the assigned amplitudes.
Abstract:
Methods and systems for determining if a defect detected on a specimen is a DOI (Defect of Interest) or a nuisance are provided. One system includes computer subsystem(s) configured for aligning output of an inspection subsystem for an area on a specimen to simulated output of the inspection subsystem for the area on the specimen and detecting a defect in the output for the area on the specimen. The computer subsystem(s) are also configured for determining a location of the defect in the output with respect to patterned features in the simulated output based on results of the detecting and aligning, determining a distance between the determined location of the defect and a known location of interest on the specimen, and determining if the defect is a DOI or a nuisance based on the determined distance.
Abstract:
A method includes identifying a first set of a first care area with a first sensitivity threshold, the first care area associated with a first design of interest within a block of repeating cells in design data; identifying an additional set of an additional care area with an additional sensitivity threshold, the additional care area associated with an additional design of interest within the block of repeating cells in design data; identifying one or more defects within the first set of the first care areas in one or more images of a selected region of a sample based on the first sensitivity threshold; and identifying one or more defects within the additional set of the additional care areas in the one or more images of the selected region of the sample based on the additional sensitivity threshold.
Abstract:
A semiconductor die is inspected using an optical microscope to generate a test image of the semiconductor die. A difference image between the test image of the semiconductor die and a reference image is derived. For each defect of a plurality of defects for the semiconductor die, a point-spread function is fit to the defect as indicated in the difference image and one or more dimensions of the fitted point-spread function are determined. Potential defects of interest in the plurality of defects are distinguished from nuisance defects, based at least in part on the one or more dimensions of the fitted point-spread function for respective defects of the plurality of defects.
Abstract:
A method includes identifying a first set of a first care area with a first sensitivity threshold, the first care area associated with a first design of interest within a block of repeating cells in design data; identifying an additional set of an additional care area with an additional sensitivity threshold, the additional care area associated with an additional design of interest within the block of repeating cells in design data; identifying one or more defects within the first set of the first care areas in one or more images of a selected region of a sample based on the first sensitivity threshold; and identifying one or more defects within the additional set of the additional care areas in the one or more images of the selected region of the sample based on the additional sensitivity threshold.
Abstract:
A semiconductor die is inspected using an optical microscope to generate a test image of the semiconductor die. A difference image between the test image of the semiconductor die and a reference image is derived. For each defect of a plurality of defects for the semiconductor die, a point-spread function is fit to the defect as indicated in the difference image and one or more dimensions of the fitted point-spread function are determined. Potential defects of interest in the plurality of defects are distinguished from nuisance defects, based at least in part on the one or more dimensions of the fitted point-spread function for respective defects of the plurality of defects.
Abstract:
Methods and systems for determining if a defect detected on a specimen is a DOI (Defect of Interest) or a nuisance are provided. One system includes computer subsystem(s) configured for aligning output of an inspection subsystem for an area on a specimen to simulated output of the inspection subsystem for the area on the specimen and detecting a defect in the output for the area on the specimen. The computer subsystem(s) are also configured for determining a location of the defect in the output with respect to patterned features in the simulated output based on results of the detecting and aligning, determining a distance between the determined location of the defect and a known location of interest on the specimen, and determining if the defect is a DOI or a nuisance based on the determined distance.